Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task

2001 ◽  
Vol 31 (6) ◽  
pp. 1065-1078 ◽  
Author(s):  
K. E. STEPHAN ◽  
V. A. MAGNOTTA ◽  
T. WHITE ◽  
S. ARNDT ◽  
M. FLAUM ◽  
...  

Background. According to current theories, schizophrenia results from altered connectivity in brain circuits for fundamental cognitive operations. Consequently, the poorly understood mechanisms of neuroleptic treatment may be explainable by altered functional interactions within such networks. The ‘cognitive dysmetria’ model hypothesizes that one key structure in these circuits is the cerebellum. To investigate the effects of olanzapine on cerebellar functional connectivity (CFC), a seed-voxel correlation analysis (SVCA) was used in a functional magnetic resonance imaging (fMRI) study of a simple finger-tapping task.Methods. fMRI scans were obtained from six schizophrenic patients under both drug-free and olanzapine-treated conditions and from a matched control group of six healthy subjects at corresponding time points. SVCAs were performed for anatomically and functionally standardized seed voxels in the anterior cerebellum. SVCA results were then processed by three different randomization analyses.Results. The analyses revealed that olanzapine caused widespread changes of CFC, including prominent changes in prefrontal cortex and mediodorsal thalamus. Significant changes in motor structures were found after subtractions within both groups and may thus indicate repetition effects rather than drug effects. Olanzapine ‘normalized’ the patients' CFC patterns for the right, but not for the left cerebellum.Conclusion. Even for a simple motor task, olanzapine affects functional interactions between the cerebellum and many non-motor brain regions, including elements of the ‘cognitive dysmetria’ circuit. Altogether, our findings suggest that olanzapine has a stronger differential effect on neural activity in prefrontal cortex and thalamus than in motor structures.

2020 ◽  
Author(s):  
Andy Schumann ◽  
Feliberto de la Cruz ◽  
Stefanie Köhler ◽  
Lisa Brotte ◽  
Karl-Jürgen Bär

AbstractBackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.MethodsHRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.ResultsFirst, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, left anterior insula, right amygdala, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.5 beats/min and an increased RMSSD as a measure of HRV by 10.1ms (33%) after the intervention. Functional connectivity of the VMPFC increased mainly to the right anterior insula, the dorsal anterior cingulate cortex and the dorsolateral prefrontal cortex after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions.ConclusionOur results show that increased vagal modulation induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.


2001 ◽  
Vol 91 (2) ◽  
pp. 821-831 ◽  
Author(s):  
J. Timothy Noteboom ◽  
Monika Fleshner ◽  
Roger M. Enoka

The purpose of this study was to determine the effect of arousal in men and women on the moment-to-moment performance of a simple motor task. We examined the control of a precision task in the presence and absence of imposed stressors. Twenty-nine subjects (14 men, 15 women; 18–44 yr) were randomly assigned to either a control group or one of two stressor groups, Mental Math or Electric Shock. Subjects presented with Math and Shock stressors, which lasted 10 min, experienced significant increases in cognitive and physiological arousal compared with baseline and control subjects. Heart rate, systolic blood pressure, and electrodermal activity were elevated 5–80% with presentation of the stressors, whereas diastolic blood pressure and salivary cortisol were unchanged. The greater levels of cognitive and physiological arousal were associated with reductions in steadiness of a pinch grip for the Shock subjects (∼130% reduction from baseline) but not for the subjects in the Math group, who experienced heightened arousal but no change in steadiness (10% reduction from baseline). Although women exhibited more of a reduction in steadiness than men, the effect was largely unrelated to the magnitude of the change in arousal.


2020 ◽  
Author(s):  
Sara Ruth Westbrook ◽  
Lauren Carrica ◽  
Asia Banks ◽  
Joshua Michael Gulley

Adolescent use of amphetamine and its closely related, methylated version methamphetamine, is alarmingly high in those who use drugs for nonmedical purposes. This raises serious concerns about the potential for this drug use to have a long-lasting, detrimental impact on the normal development of the brain and behavior that is ongoing during adolescence. In this review, we explore recent findings from both human and laboratory animal studies that investigate the consequences of amphetamine and methamphetamine exposure during this stage of life. We highlight studies that assess sex differences in adolescence, as well as those that are designed specifically to address the potential unique effects of adolescent exposure by including groups at other life stages (typically young adulthood). We consider epidemiological studies on age and sex as vulnerability factors for developing problems with the use of amphetamines, as well as human and animal laboratory studies that tap into age differences in use, its short-term effects on behavior, and the long-lasting consequences of this exposure on cognition. We also focus on studies of drug effects in the prefrontal cortex, which is known to be critically important for cognition and is among the later maturing brain regions. Finally, we discuss important issues that should be addressed in future studies so that the field can further our understanding of the mechanisms underlying adolescent use of amphetamines and its outcomes on the developing brain and behavior.


1976 ◽  
Vol 43 (2) ◽  
pp. 447-450 ◽  
Author(s):  
Michael Peters

After prolonged practice (1300 10-sec trials) the tapping speed of the nonpreferred hand reached that of the preferred hand on a simple finger-tapping task. Analysis of the intertap intervals showed the variability of the duration of intertap intervals was smaller for the preferred than for the nonpreferred hand; the difference was not affected by the prolonged practice for N = 1.


2006 ◽  
Vol 2006 ◽  
pp. 1-7 ◽  
Author(s):  
João Ricardo Sato ◽  
Daniel Yasumasa Takahashi ◽  
Ellison Fernando Cardoso ◽  
Maria da Graça Morais Martin ◽  
Edson Amaro Júnior ◽  
...  

Recent advances in neuroimaging techniques have provided precise spatial localization of brain activation applied in several neuroscience subareas. The development of functional magnetic resonance imaging (fMRI), based on the BOLD signal, is one of the most popular techniques related to the detection of neuronal activation. However, understanding the interactions between several neuronal modules is also an important task, providing a better comprehension about brain dynamics. Nevertheless, most connectivity studies in fMRI are based on a simple correlation analysis, which is only an association measure and does not provide the direction of information flow between brain areas. Other proposed methods like structural equation modeling (SEM) seem to be attractive alternatives. However, this approach assumes prior information about the causality direction and stationarity conditions, which may not be satisfied in fMRI experiments. Generally, the fMRI experiments are related to an activation task; hence, the stimulus conditions should also be included in the model. In this paper, we suggest an intervention analysis, which includes stimulus condition, allowing a nonstationary modeling. Furthermore, an illustrative application to real fMRI dataset from a simple motor task is presented.


1976 ◽  
Vol 43 (2) ◽  
pp. 636-638 ◽  
Author(s):  
Jeffrey R. Cram ◽  
Edwin Lackey

To examine the type of proprioceptive information which subjects include in the definition of tension, 52 subjects were asked to indicate the location of where they felt tension while engaging in a simple motor task. Responses indicated that tendon stretch, muscle tension, and other cues are utilized in the subject's definition of tension.


2016 ◽  
Vol 38 (4) ◽  
pp. 1833-1845 ◽  
Author(s):  
Rhianna Goozee ◽  
Owen O'Daly ◽  
Rowena Handley ◽  
Tiago Reis Marques ◽  
Heather Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document