scholarly journals AMPed-up adolescents: the role of age in the abuse of amphetamines and its consequences on cognition and prefrontal cortex development

2020 ◽  
Author(s):  
Sara Ruth Westbrook ◽  
Lauren Carrica ◽  
Asia Banks ◽  
Joshua Michael Gulley

Adolescent use of amphetamine and its closely related, methylated version methamphetamine, is alarmingly high in those who use drugs for nonmedical purposes. This raises serious concerns about the potential for this drug use to have a long-lasting, detrimental impact on the normal development of the brain and behavior that is ongoing during adolescence. In this review, we explore recent findings from both human and laboratory animal studies that investigate the consequences of amphetamine and methamphetamine exposure during this stage of life. We highlight studies that assess sex differences in adolescence, as well as those that are designed specifically to address the potential unique effects of adolescent exposure by including groups at other life stages (typically young adulthood). We consider epidemiological studies on age and sex as vulnerability factors for developing problems with the use of amphetamines, as well as human and animal laboratory studies that tap into age differences in use, its short-term effects on behavior, and the long-lasting consequences of this exposure on cognition. We also focus on studies of drug effects in the prefrontal cortex, which is known to be critically important for cognition and is among the later maturing brain regions. Finally, we discuss important issues that should be addressed in future studies so that the field can further our understanding of the mechanisms underlying adolescent use of amphetamines and its outcomes on the developing brain and behavior.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marlene Cervantes González

Abstract Persistent Organic Pollutants (POPs) are exogenous, artificially made chemicals that can disrupt the biological system of individuals and animals. POPs encompass a variety of chemicals including, dioxins, organochlorines (OCs), polychlorinated biphenyl (PCBs), and perfluoroalkyl substances (PFASs) that contain a long half-life and highly resistant to biodegradation. These environmental pollutants accumulate over time in adipose tissues of living organisms and alter various insulin function-related genes. Childhood Metabolic Syndrome (MetS) consists of multiple cardiovascular risk factors, insulin function being one of them. Over the years, the incidence of the syndrome has increased dramatically. It is imperative to explore the role of persistent organic pollutants in the development of Childhood Metabolic Syndrome. Some epidemiological studies have reported an association between prenatal exposure to POPs and offspring MetS development throughout childhood. These findings have been replicated in animal studies in which these pollutants exercise negative health outcomes such as obesity and increased waist circumference. This review discusses the role of prenatal exposure to POPs among offspring who develop MetS in childhood, the latest research on the MetS concept, epidemiological and experimental findings on MetS, and the POPs modes of action. This literature review identified consistent research results on this topic. Even though the studies in this review had many strengths, one major weakness was the usage of different combinations of MetS criteria to measure the outcomes. These findings elucidate the urgent need to solidify the pediatric MetS definition. An accurate definition will permit scientists to measure the MetS as a health outcome properly and allow clinicians to diagnose pediatric MetS and provide individualized treatment appropriately.


2021 ◽  
pp. 35-55
Author(s):  
Om Prakash Yadav ◽  
Yojana Yadav ◽  
Shashwati Ray

Author(s):  
C. Sue Carter ◽  
Suma Jacob

The effects of oxytocin and vasopressin on the brain and behavior can be sexually dimorphic, especially during the course of development (Bales, Kim, et al., 2004; Bales, Pfeifer, et al., 2004; Bales, Plotsky, et al., 2007; Bielsky et al., 2005a; Carter, 2003; Thompson et al., 2006; Yamamoto et al., 2005; Yamamoto et al., 2004). Given the sexual discrepancy observed in autism spectrum disorders (ASDs), these two neuropeptides, oxytocin (OT) and arginine vasopressin (AVP), have received attention for their potential role in ASDs (Green and Hollander, 2010; Insel et al., 1999; Leckman & Herman, 2002; Welch et al., 2005; Winslow, 2005; Young et al., 2002). Changes in either OT or AVP and their receptors could be capable of influencing symptom domains or behaviors associated with ASDs. Arginine vasopressin is androgen dependent in some brain regions (De Vries & Panzica, 2006), and males are more sensitive to AVP, especially during development. We hypothesize here that AVP, which has a unique role in males, must be present in optimal levels to be protective against ASDs. Either excess AVP or disruptions in the AVP system could play a role in development of the traits found in ASDs. In contrast, OT may possibly be secreted in response to adversity, especially in females, serving as a protective factor.


2020 ◽  
Author(s):  
Francisco J. Parada ◽  
Alejandra Rossi

Recent technological advancements encompassed under the Mobile Brain/Body Imaging (MoBI) framework, have produced exciting new experimental results linking mind, brain, and behavior. The main goal of the MoBI approach is to model brain and body dynamics during every-day, natural, real-life situations. However, even though considerable advances have been made in both hardware and software, technical and analytical conditions are not yet optimal. The MoBI approach is based on attaching synchronized, small, and lightweight neurobehavioral sensors to and around participants during behaviorally-measured structured, semi-structured, and unstructured settings. These sensors have yet to become fully unobtrusive or transparent. Even though a considerable technical and analytical gap still exists, acquisition of brain/body dynamics during real-world situations as well as in virtual, modified, and/or extended laboratory settings has been -in many cases- successful. Nevertheless, even if the technical/analytical gap is breached, novel hypotheses, measures, and experimental paradigms are needed in order to tackle MoBI’s ultimate goal: to model and understand cognition, behavior, and experience as it emerges and unfolds unto and from the world. Such a goal is not completely novel or unique to the MoBI framework; it is at the core of a long-standing scientific and philosophical challenge. The present work starts by briefly reviewing the historical origins of complexity in order to identify three “waves and ripples of complexity” derived from naturalist accounts to the historical brain/body problem. We furthermore argue for a current 4th wave. Finally, we offer the reader what we consider to be the main objective for the MoBI+4E framework in its quest for understanding the functional role of brain/body/world couplings in the emergence of cognition.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuyou Chen ◽  
Xinbo Lu ◽  
Yuzhen Li ◽  
Lulu Zeng ◽  
Ping Yu ◽  
...  

Although humans constitute an exceptionally cooperative species that is able to collaborate on large scales for common benefits, cooperation remains a longstanding puzzle in biological and social science. Moreover, cooperation is not always related to resource allocation and gains but is often related to losses. Revealing the neurological mechanisms and brain regions related to cooperation is important for reinforcing cooperation-related gains and losses. Recent neuroscience studies have found that the decision-making process of cooperation is involved in the function of the ventromedial prefrontal cortex (VMPFC). In the present study, we aimed to investigate the causal role of the VMPFC in cooperative behavior concerning gains and losses through the application of transcranial direct current stimulation (tDCS). We integrated cooperation-related gains and losses into a unified paradigm. Based on the paradigm, we researched cooperation behaviors regarding gains in standard public good games and introduced public bad games to investigate cooperative behavior regarding losses. Our study revealed that the VMPFC plays different roles concerning gains and losses in situations requiring cooperation. Anodal stimulation over the VMPFC decreased cooperative behavior in public bad games, whereas stimulation over the VMPFC did not change cooperative behavior in public good games. Moreover, participants’ beliefs about others’ cooperation were changed in public bad games but not in public good games. Finally, participants’ cooperative attitudes were not influenced in the public good or public bad games under the three stimulation conditions.


2014 ◽  
Vol 16 (3) ◽  
pp. 307-320 ◽  

Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may "program" offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A82-A82
Author(s):  
J L Tyan ◽  
M I Sotelo ◽  
C M Markunas ◽  
J G Morrow ◽  
A Eban-Rothschild

Abstract Introduction Prior to sleep, animals perform various sleep-preparatory behaviors, yet little is known about their contribution to sleep physiology. Sleep hygiene, which involves proper sleep preparation, is an effective treatment for insomnia in humans. The high prevalence of sleep disorders and drawbacks of available pharmacological interventions necessitate a better understanding of the ecological and evolutionary contexts of sleep. Nest-building is a sleep-preparatory behavior performed by many species. In this study, we aimed to determine whether the presence of a nest modulates sleep. Specifically, we investigated the effects of a nest on sleep/wake architecture and activity in wake-promoting neurons in mice. Methods To examine the role of nesting in sleep/wake architecture, we recorded EEG/EMG activity over 24 hrs (n=14, 7 males and 7 females) in the presence/absence of a nest. To determine whether the lack of a nest activates wake-promoting neurons, we utilized TRAP (targeted recombination in active populations) technology to label neurons activated by nest removal (n=4 mice per experimental group). Results Mice without nests exhibited increased latencies to NREM and REM sleep and spent less time asleep during the inactive/light phase. Mice without nests also exhibited shorter episodes of NREM and REM sleep and more transitions between arousal states. Additionally, our preliminary results suggest that nest removal significantly increases population activity in multiple brain regions, including several cortical and thalamic regions. Conclusion Our findings support the hypothesis that the presence of a nest facilitates and consolidates sleep. The causal role of specific neuronal populations in sleep fragmentation in the absence of a nest remains to be elucidated. Taken together, our findings provide the first evidence for a role of sleep-preparatory behaviors in the facilitation and consolidation of sleep and could shape the development of novel treatments for sleep disorders. Support This work is supported by the Sloan Alfred P. Foundation, the Brain and Behavior Research Foundation, and the Eisenberg Translational Research Award.


2020 ◽  
Author(s):  
Milena Rmus ◽  
Samuel McDougle ◽  
Anne Collins

Reinforcement learning (RL) models have advanced our understanding of how animals learn and make decisions, and how the brain supports some aspects of learning. However, the neural computations that are explained by RL algorithms fall short of explaining many sophisticated aspects of human decision making, including the generalization of learned information, one-shot learning, and the synthesis of task information in complex environments. Instead, these aspects of instrumental behavior are assumed to be supported by the brain’s executive functions (EF). We review recent findings that highlight the importance of EF in learning. Specifically, we advance the theory that EF sets the stage for canonical RL computations in the brain, providing inputs that broaden their flexibility and applicability. Our theory has important implications for how to interpret RL computations in the brain and behavior.


Sign in / Sign up

Export Citation Format

Share Document