scholarly journals Radiocarbon Dating of Deep-Sea Corals

Radiocarbon ◽  
2002 ◽  
Vol 44 (2) ◽  
pp. 567-580 ◽  
Author(s):  
Jess F Adkins ◽  
Shelia Griffin ◽  
Michaele Kashgarian ◽  
Hai Cheng ◽  
E R M Druffel ◽  
...  

Deep-sea corals are a promising new archive of paleoclimate. Coupled radiocarbon and U-series dates allow 14C to be used as a tracer of ocean circulation rate in the same manner as it is used in the modern ocean. Diagenetic alteration of coral skeletons on the seafloor requires a thorough cleaning of contaminating phases of carbon. In addition, 10% of the coral must be chemically leached prior to dissolution to remove adsorbed modern CO2. A survey of modern samples from the full δ14C gradient in the deep ocean demonstrates that the coralline CaCO3 records the radiocarbon value of the dissolved inorganic carbon.

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 533-543 ◽  
Author(s):  
Sheila Griffin ◽  
Ellen R M Druffel

Radiocarbon measurements in deep-sea corals from the Little Bahama Bank were used to determine the source of carbon to the skeletal matrices. Specimens of Lophelia, Gerardia, Paragorgia johnsoni and Corallium noibe were sectioned according to visible growth rings and/or stem diameter. We determined that the source of carbon to the corals accreting organic matter was primarily from surface-derived sources. Those corals that accrete a calcerous skeleton were found to obtain their carbon solely from dissolved inorganic carbon (DIC) in sea water from the depth at which the corals grew. These results, in conjunction with growth-rate studies using short-lived radioisotopes, support the use of deep-sea corals to reconstruct time histories of transient and non-transient tracers at depth in the oceans.


2006 ◽  
Vol 2 (5) ◽  
pp. 711-743 ◽  
Author(s):  
L. C. Skinner

Abstract. Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.


2021 ◽  
Author(s):  
Anna Joy Drury ◽  
Thomas Westerhold ◽  
David A. Hodell ◽  
Mitchell Lyle ◽  
Cédric M. John ◽  
...  

<p>During the late Miocene, meridional sea surface temperature gradients, deep ocean circulation patterns, and continental configurations evolved to a state similar to modern day. Deep-sea benthic foraminiferal stable oxygen (δ<sup>18</sup>O) and carbon (δ<sup>13</sup>C) isotope stratigraphy remains a fundamental tool for providing accurate chronologies and global correlations, both of which can be used to assess late Miocene climate dynamics. Until recently, late Miocene benthic δ<sup>18</sup>O and δ<sup>13</sup>C stratigraphies remained poorly constrained, due to relatively poor global high-resolution data coverage.</p><p>Here, I present ongoing work that uses high-resolution deep-sea foraminiferal stable isotope records to improve late Miocene (chrono)stratigraphy. Although challenges remain, the coverage of late Miocene benthic δ<sup>18</sup>O and δ<sup>13</sup>C stratigraphies has drastically improved in recent years, with high-resolution records now available across the Atlantic and Pacific Oceans. The recovery of these deep-sea records, including the first astronomically tuned, deep-sea integrated magneto-chemostratigraphy, has also helped to improve the late Miocene geological timescale. Finally, I will briefly touch upon how our understanding of late Miocene climate evolution has improved, based on the high-resolution deep-sea archives that are now available.</p>


Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
John M Hayes

We have measured the radiocarbon contents of individual, solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from Ross Sea surface sediments. The corresponding 14C ages are equivalent to that of the post-bomb dissolved inorganic carbon (DIC) reservoir. Moreover, molecular 14C variations in surficial (upper 15 cm) sediments indicate that these compounds may prove useful for reconstructing chronologies of Antarctic margin sediments containing uncertain (and potentially variable) quantities of relict organic carbon. A preliminary molecular 14C chronology suggests that the accumulation rate of relict organic matter has not changed during the last 500 14C yr. The focus of this study is to determine the validity of compound-specific 14C analysis as a technique for reconstructing chronologies of Antarctic margin sediments.


2019 ◽  
Vol 116 (38) ◽  
pp. 18874-18879 ◽  
Author(s):  
Paul F. Hoffman ◽  
Kelsey G. Lamothe

Carbonate sediments of nonglacial Cryogenian (659 to 649 Ma) and early Ediacaran (635 to 590 Ma) age exhibit large positive and negative δ13Ccarb excursions in a shallow-water marine platform in northern Namibia. The same excursions are recorded in fringing deep-sea fans and in carbonate platforms on other paleocontinents. However, coeval carbonates in the upper foreslope of the Namibian platform, and to a lesser extent in the outermost platform, have relatively uniform δ13Ccarb compositions compatible with dissolved inorganic carbon (DIC) in the modern ocean. We attribute the uniform values to fluid-buffered diagenesis that occurred where seawater invaded the sediment in response to geothermal porewater convection. This attribution, which is testable with paired Ca and Mg isotopes, implies that large δ13Ccarb excursions observed in Neoproterozoic platforms, while sedimentary in origin, do not reflect the composition of ancient open-ocean DIC.


Author(s):  
Carol Robinson

This chapter describes how the activity of phytoplankton, bacteria, and Archaea drive the marine biogeochemical cycles of carbon, nitrogen, and phosphorus, and how climate driven changes in plankton abundance and community composition influence these biogeochemical cycles in the North Atlantic Ocean and adjacent seas. Carbon, nitrogen, and phosphorus are essential elements required for all life on Earth. In the marine environment, dissolved inorganic carbon, nitrogen, and phosphorus are utilized during phytoplankton growth to form organic material, which is respired and remineralized back to inorganic forms by the activity of bacteria, Archaea, and zooplankton. The net result of the photosynthesis, calcification, and respiration of marine plankton is the uptake of carbon dioxide from the atmosphere, its sequestration to the deep ocean as organic and inorganic carbon, and its availability to fuel all fish and shellfish production.


2020 ◽  
Vol 6 (42) ◽  
pp. eabb3807
Author(s):  
Tao Li ◽  
Laura F. Robinson ◽  
Tianyu Chen ◽  
Xingchen T. Wang ◽  
Andrea Burke ◽  
...  

The Southern Ocean plays a crucial role in regulating atmospheric CO2 on centennial to millennial time scales. However, observations of sufficient resolution to explore this have been lacking. Here, we report high-resolution, multiproxy records based on precisely dated deep-sea corals from the Southern Ocean. Paired deep (∆14C and δ11B) and surface (δ15N) proxy data point to enhanced upwelling coupled with reduced efficiency of the biological pump at 14.6 and 11.7 thousand years (ka) ago, which would have facilitated rapid carbon release to the atmosphere. Transient periods of unusually well-ventilated waters in the deep Southern Ocean occurred at 16.3 and 12.8 ka ago. Contemporaneous atmospheric carbon records indicate that these Southern Ocean ventilation events are also important in releasing respired carbon from the deep ocean to the atmosphere. Our results thus highlight two distinct modes of Southern Ocean circulation and biogeochemistry associated with centennial-scale atmospheric CO2 jumps during the last deglaciation.


2010 ◽  
Vol 6 (5) ◽  
pp. 645-673 ◽  
Author(s):  
K. I. C. Oliver ◽  
B. A. A. Hoogakker ◽  
S. Crowhurst ◽  
G. M. Henderson ◽  
R. E. M. Rickaby ◽  
...  

Abstract. The isotopic composition of carbon, δ13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of δ13C measurements taken from foraminifera in marine sediment cores over the last 150 000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common δ18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between δ13C of calcite and of dissolved inorganic carbon (DIC) in seawater. This will assist comparison with δ13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation. High global deep ocean δ13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS) 1, 3, 5a, c and e, and low δ13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical δ13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale δ13C during the last interglacial (MIS 5e) is not clearly distinguishable from the Holocene (MIS 1) or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2 concentration during these intervals. Similarly, MIS 6 is only distinguishable from MIS 2 or 4 due to globally lower δ13C values both in benthic and planktonic data. This result is obtained despite individual records showing differences between these intervals, indicating that care must be used in interpreting large scale signals from a small number of records.


Sign in / Sign up

Export Citation Format

Share Document