scholarly journals Radiocarbon Dating of Individual Fatty Acids as a Tool for Refining Antarctic Margin Sediment Chronologies

Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
John M Hayes

We have measured the radiocarbon contents of individual, solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from Ross Sea surface sediments. The corresponding 14C ages are equivalent to that of the post-bomb dissolved inorganic carbon (DIC) reservoir. Moreover, molecular 14C variations in surficial (upper 15 cm) sediments indicate that these compounds may prove useful for reconstructing chronologies of Antarctic margin sediments containing uncertain (and potentially variable) quantities of relict organic carbon. A preliminary molecular 14C chronology suggests that the accumulation rate of relict organic matter has not changed during the last 500 14C yr. The focus of this study is to determine the validity of compound-specific 14C analysis as a technique for reconstructing chronologies of Antarctic margin sediments.

2008 ◽  
Vol 1 (1) ◽  
pp. 17-51 ◽  
Author(s):  
G. Shaffer ◽  
S. Malskær Olsen ◽  
J. O. Pepke Pedersen

Abstract. A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs. silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 Gt C input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2011 ◽  
Vol 8 (2) ◽  
pp. 3353-3402 ◽  
Author(s):  
S. Bourgeois ◽  
A. M. Pruski ◽  
M.-Y. Sun ◽  
R. Buscail ◽  
F. Lantoine ◽  
...  

Abstract. The Gulf of Lions is a river-dominated ocean margin (RiOMar) that receives high loads of nutrients, sediments and particulate matter from the Rhône river. Most of the particulate materials from the Rhône settle rapidly on the seafloor, this raises the question of the fate of these large quantities of organic carbon delivered to the benthic boundary layer. Surface sediments (0–0.5 cm) were collected in the Rhône prodelta and its adjacent shelf during a period of low river discharge (April 2007, 16 stations). The sources, distribution and lability of sedimentary organic matter was examined using bulk (organic carbon, total nitrogen, grain size) and molecular-level (pigments, amino acids, fatty acids, δ13C of individual fatty acids) analyses. Our results confirmed previous observations of a southwestward Rhodanian imprint in the nearshore sediments. Fatty acid biomarkers and compound-specific δ13C signatures of most fatty acids clearly indicate that the Rhône inputs consist in a mixture of organic matter (OM) from different sources with a strong contribution from terrestrial plants, and a smaller input from freshwater microalgae, mostly diatoms. The influence of the Rhône River was prominent within the first ten kilometers, but may still be observed in the outer shelf (~21 km) as indicated by the occurrence of long chain fatty acids derived from vascular plants and their δ13C signatures. In the proximal prodelta, bacteria-specific fatty acids were abundant (1.65 mg g−1OC at the mouth site) and were relatively depleted in δ13C confirming that bacteria preferentially utilize terrestrial OM in this area. In the shelf area, the inputs of marine OM and its preferential utilization by the bacteria was confirmed, but the coupling between the pelagic and the benthic compartments appeared limited at this period of the year. Overall, degradation indexes based on amino acids (Dauwe's degradation index) and pigments (ratio of intact chlorophyll-a to the sum of chlorophyll-a + phaeopigment-a), as well as isotopic enrichment of source-specific fatty acids reveal an offshore gradient of OM decay reflecting the rapid deposition of the terrestrial material in the prodelta, the low mixing with OM deriving from marine sources and the efficient degradation of the OM once deposited. Terrestrial OM is usually considered as being refractory due to the presence of structural polymers and its advanced stage of degradation. However, the OM delivered by the Rhône is relatively labile as shown by the intermediary value of Dauwe's degradation index (DI = +0.1), the high proportion of bio-available nitrogen and the occurrence of polyunsaturated fatty acids. Deltaic sediments off the Rhône river should thus be of sufficiently high nutritional quality to sustain dense macrofaunal communities.


2008 ◽  
Vol 1 (1) ◽  
pp. 39-124
Author(s):  
G. Shaffer ◽  
S. Malskǽr Olsen ◽  
J. O. P. Pedersen

Abstract. A new, low-order Earth system model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 GtC input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2011 ◽  
Vol 8 (11) ◽  
pp. 3107-3125 ◽  
Author(s):  
S. Bourgeois ◽  
A. M. Pruski ◽  
M.-Y. Sun ◽  
R. Buscail ◽  
F. Lantoine ◽  
...  

Abstract. The Gulf of Lions is a river-dominated ocean margin that receives high loads of nutrients and particulate matter from the Rhône River but most particulate materials settle rapidly on the nearshore seafloor. One question is raised on the fate of these large quantities of organic carbon delivered by the river to the coastal marine environment. Surface sediments (0–0.5 cm) were collected in the Rhône prodelta and its adjacent shelf during a period of low river discharge (April 2007, 16 stations). The sources, distribution and lability of sedimentary organic matter were examined using bulk (organic carbon, total nitrogen, stable carbon isotope ratios, and grain size) and molecular-level (pigments, amino acids, fatty acids, and δ13C of individual fatty acids) analyses. Our results confirmed previous observations of a southwestward Rhodanian imprint in the nearshore sediments, with 97% of terrigenous inputs of organic matter near the river mouth. Isotopic values of bulk organic carbon, as well as fatty acid biomarkers and compound-specific δ13C signatures of most fatty acids clearly indicate that the Rhône inputs consist of a mixture of organic matter (OM) from different origins with a strong contribution from terrestrial sources (soil and plant debris), and a smaller input from freshwater microalgae, mostly diatoms. The influence of the Rhône River was prominent within the first ten kilometers, but may still be observed on the outer shelf (~21 km) as indicated by the occurrence of long chain fatty acids, which are derived from vascular plants, and their δ13C signatures. In the proximal prodelta, bacteria-specific fatty acids were abundant (1.65 mg g−1 OC at the mouth site) and were relatively depleted in δ13C confirming that bacteria mostly utilize land-derived OM. In the shelf area, the inputs of marine OM and its predominant utilization by the bacteria was confirmed, but the coupling between the pelagic and the benthic compartments appeared limited at this period of the year. Overall, degradation indexes based on amino acids (Dauwe's degradation index) and pigments (ratio of intact chlorophyll-a to the sum of chlorophyll-a + phaeopigment-a), as well as isotopic enrichment of source-specific fatty acids reveal an offshore gradient of OM decay reflecting the rapid deposition of the terrestrial material in the prodelta, the low mixing with OM deriving from marine sources and the efficient degradation of the OM. The OM delivered by the Rhône is relatively labile based on the intermediary value of Dauwe's degradation index, the high proportion of bio-available nitrogen and the occurrence of polyunsaturated fatty acids. Deltaic sediments off the Rhône River should thus be of sufficiently high nutritional quality to sustain dense macrofaunal communities.


2008 ◽  
Vol 5 (6) ◽  
pp. 1615-1623 ◽  
Author(s):  
S. Fiedler ◽  
B. S. Höll ◽  
A. Freibauer ◽  
K. Stahr ◽  
M. Drösler ◽  
...  

Abstract. Numerous studies have dealt with carbon (C) contents in Histosols, but there are no studies quantifying the relative importance of the individual C components in pore waters. For this study, measurements were taken of all the carbon components (particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inorganic carbon, DIC; dissolved methane, CH4) in the soil pore water of calcareous fens under three different water management regimes (re-wetted, deeply and moderately drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at depths between 10 and 150 cm. The main results obtained were: (1) DIC (94–280 mg C l−1) was the main C-component. (2) POC and DOC concentrations in the pore water (14–125 mg C l−1 vs. 41–95 mg C l−1) were pari passu. (3) Dissolved CH4 was the smallest C component (0.005–0.9 mg C l−1). Interestingly, about 30% of the POM particles were colonized by microbes indicating that they are active in the internal C turnover. Certainly, both POC and DOC fractions are essential components of the C budget of peatlands. Furthermore, dissolved CO2 in all forms of DIC appears to be an important part of peatland C-balance.


2010 ◽  
Vol 7 (2) ◽  
pp. 2889-2926 ◽  
Author(s):  
B. He ◽  
M. Dai ◽  
W. Huang ◽  
Q. Liu ◽  
H. Chen ◽  
...  

Abstract. Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N), stable carbon isotopic (δ 13C) composition, as well as molecular-level analyses. Total organic carbon (TOC) content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose) yielded between 4.0 and 18.6 mg (100 mg OC)−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 57±13% for Lingdingyang Bay, 19±2% for the inner shelf, which decreased further to 4.3±0.5% on the outer shelf. The molecular composition of the carbohydrate in surface sediments also suggested that the inner estuary was rich in terrestrial-derived carbohydrates but that the contribution of terrestrial-derived carbohydrates decreased offshore. Terrestrial organic carbon accumulation flux was estimated as 1.37±0.92×1011 g yr−1 in Lingdingyang Bay, which accounted for 37±25% of the terrestrial organic carbon transported to the Bay. The burial efficiency of terrestrial organic matter was markedly lower than that of suspended particulate substance (~71%) suggesting that the riverine POC undergoes significant degradation and replacement during transportation through the estuary.


Sign in / Sign up

Export Citation Format

Share Document