Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle

1995 ◽  
Vol 22 (4) ◽  
pp. 417-420 ◽  
Author(s):  
William L. Miller ◽  
Richard G. Zepp
Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
John M Hayes

We have measured the radiocarbon contents of individual, solvent-extractable, short-chain (C14, C16, and C18) fatty acids isolated from Ross Sea surface sediments. The corresponding 14C ages are equivalent to that of the post-bomb dissolved inorganic carbon (DIC) reservoir. Moreover, molecular 14C variations in surficial (upper 15 cm) sediments indicate that these compounds may prove useful for reconstructing chronologies of Antarctic margin sediments containing uncertain (and potentially variable) quantities of relict organic carbon. A preliminary molecular 14C chronology suggests that the accumulation rate of relict organic matter has not changed during the last 500 14C yr. The focus of this study is to determine the validity of compound-specific 14C analysis as a technique for reconstructing chronologies of Antarctic margin sediments.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-51 ◽  
Author(s):  
G. Shaffer ◽  
S. Malskær Olsen ◽  
J. O. Pepke Pedersen

Abstract. A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs. silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 Gt C input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2008 ◽  
Vol 1 (1) ◽  
pp. 39-124
Author(s):  
G. Shaffer ◽  
S. Malskǽr Olsen ◽  
J. O. P. Pedersen

Abstract. A new, low-order Earth system model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 GtC input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2008 ◽  
Vol 5 (6) ◽  
pp. 1615-1623 ◽  
Author(s):  
S. Fiedler ◽  
B. S. Höll ◽  
A. Freibauer ◽  
K. Stahr ◽  
M. Drösler ◽  
...  

Abstract. Numerous studies have dealt with carbon (C) contents in Histosols, but there are no studies quantifying the relative importance of the individual C components in pore waters. For this study, measurements were taken of all the carbon components (particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inorganic carbon, DIC; dissolved methane, CH4) in the soil pore water of calcareous fens under three different water management regimes (re-wetted, deeply and moderately drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at depths between 10 and 150 cm. The main results obtained were: (1) DIC (94–280 mg C l−1) was the main C-component. (2) POC and DOC concentrations in the pore water (14–125 mg C l−1 vs. 41–95 mg C l−1) were pari passu. (3) Dissolved CH4 was the smallest C component (0.005–0.9 mg C l−1). Interestingly, about 30% of the POM particles were colonized by microbes indicating that they are active in the internal C turnover. Certainly, both POC and DOC fractions are essential components of the C budget of peatlands. Furthermore, dissolved CO2 in all forms of DIC appears to be an important part of peatland C-balance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gen Wang ◽  
Yongli Wang ◽  
Zhifu Wei ◽  
Zepeng Sun ◽  
Wei He ◽  
...  

Uplift of the Tibetan Plateau plays a significant and lasting role in the variations of climate conditions and global carbon cycle. However, our knowledge is limited due to the lack of long-sequence records revealing rates of CO2 and CH4 production, hampering our understanding of the relationship between paleoclimatic conditions, carbon cycling and greenhouse gas flux. Here, we present a combination of paleoclimate records and low-temperature thermal simulation results from sediments of the Xiaolongtan Basin at the southeastern margin of the Qinghai-Tibetan Plateau, spanning the late Miocene (14.1 ∼ 11.6 Ma). The n-alkane-derived proxies suggested that the sources of organic matter were obviously different: a mixed source including lower organisms and terrestrial higher plants for the Dongshengqiao Formation from 14.1 to 12.6 Ma, and a predominant contribution from terrestrial higher plants for Xiaolongtan Formation between 12.6 and 11.6 Ma. The paleoclimate was generally warm and humid as reflected by the lipid biomarkers, consistent with previous studies. In addition, the carbon gases (including CO2 and hydrocarbon gases) generated by the low-temperature thermal simulation experiments indicated a production rate of CO2 and CH4 were as high as 88,000 ml/kg rock and 4,000 ml/kg rock, respectively, implying there were certain amounts of carbon gases generated and released into the atmosphere during their shallow burial stage. Besides, the calculated production rate of carbon gases and the estimated burial flux of organic carbon varied in response to the variations of paleoclimate conditions. Based on these observations, we propose that the climate conditions predominantly controlled the formation and accumulation of organic matter, which consequently affected the production of carbon gases and burial flux of organic carbon. The results presented here may provide a significant insight into the carbon cycle in the southeast of the Tibetan Plateau.


2010 ◽  
Vol 7 (2) ◽  
pp. 2889-2926 ◽  
Author(s):  
B. He ◽  
M. Dai ◽  
W. Huang ◽  
Q. Liu ◽  
H. Chen ◽  
...  

Abstract. Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N), stable carbon isotopic (δ 13C) composition, as well as molecular-level analyses. Total organic carbon (TOC) content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose) yielded between 4.0 and 18.6 mg (100 mg OC)−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 57±13% for Lingdingyang Bay, 19±2% for the inner shelf, which decreased further to 4.3±0.5% on the outer shelf. The molecular composition of the carbohydrate in surface sediments also suggested that the inner estuary was rich in terrestrial-derived carbohydrates but that the contribution of terrestrial-derived carbohydrates decreased offshore. Terrestrial organic carbon accumulation flux was estimated as 1.37±0.92×1011 g yr−1 in Lingdingyang Bay, which accounted for 37±25% of the terrestrial organic carbon transported to the Bay. The burial efficiency of terrestrial organic matter was markedly lower than that of suspended particulate substance (~71%) suggesting that the riverine POC undergoes significant degradation and replacement during transportation through the estuary.


1973 ◽  
Vol 30 (10) ◽  
pp. 1441-1445 ◽  
Author(s):  
Michael P. Stainton

A simple, rapid method for determining dissolved inorganic carbon in water is described. A 20-cm3 sample of water is drawn into a 50-cm3 polypropylene syringe and acidified by injection of 1 cm3 of dilute sulphuric acid. Twenty-nine cubic centimeters of helium at atmospheric pressure is injected into the syringe followed by 10 sec of manual agitation to partition CO2 between gas and liquid phase. The gas phase containing 60% of CO2 from the sample is then analyzed by gas chromatography. This method has been used to determine dissolved inorganic and organic carbon in Canadian Shield waters and to determine total carbonates in sediments.


2017 ◽  
Vol 14 (21) ◽  
pp. 4949-4963 ◽  
Author(s):  
Andrew Joesoef ◽  
David L. Kirchman ◽  
Christopher K. Sommerfield ◽  
Wei-Jun Cai

Abstract. Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3− concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3−) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2  ×  109 mol C yr−1 and 16.5 ± 10.6  ×  109 mol C yr−1, respectively, while net DIC production within the estuary including inputs from intertidal marshes is estimated to be 5.1  ×  109 mol C yr−1. The small difference between riverine input and export flux suggests that, in the case of the Delaware Estuary and perhaps other large coastal systems with long freshwater residence times, the majority of the DIC produced in the estuary by biological processes is exchanged with the atmosphere rather than exported to the sea.


Sign in / Sign up

Export Citation Format

Share Document