scholarly journals The 12,460-Year Hohenheim Oak and Pine Tree-Ring Chronology from Central Europe—A Unique Annual Record for Radiocarbon Calibration and Paleoenvironment Reconstructions

Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1111-1122 ◽  
Author(s):  
Michael Friedrich ◽  
Sabine Remmele ◽  
Bernd Kromer ◽  
Jutta Hofmann ◽  
Marco Spurk ◽  
...  

The combined oak and pine tree-ring chronologies of Hohenheim University are the backbone of the Holocene radiocarbon calibration for central Europe. Here, we present the revised Holocene oak chronology (HOC) and the Preboreal pine chronology (PPC) with respect to revisions, critical links, and extensions. Since 1998, the HOC has been strengthened by new trees starting at 10,429 BP (8480 BC). Oaks affected by cockchafer have been identified and discarded from the chronology. The formerly floating PPC has been cross-matched dendrochronologically to the absolutely dated oak chronology, which revealed a difference of only 8 yr to the published 14C wiggle-match position used for IntCal98. The 2 parts of the PPC, which were linked tentatively at 11,250 BP, have been revised and strengthened by new trees, which enabled us to link both parts of the PPC dendrochronologically. Including the 8-yr shift of the oak-pine link, the older part of the PPC (pre-11,250 BP) needs to be shifted 70 yr to older ages with respect to the published data (Spurk 1998). The southern German part of the PPC now covers 2103 yr from 11,993–9891 BP (10,044–7942 BC). In addition, the PPC was extended significantly by new pine chronologies from other regions. A pine chronology from Avenches and Zürich, Switzerland, and another from the Younger Dryas forest of Cottbus, eastern Germany, could be crossdated and dendrochronologically matched to the PPC. The absolutely dated tree-ring chronology now extends back to 12,410 cal BP (10,461 BC). Therefore, the tree-ring-based 14C calibration now reaches back into the Central Younger Dryas. With respect to the Younger Dryas-Preboreal transition identified in the ring width of our pines at 11,590 BP, the absolute tree-ring chronology now covers the entire Holocene and 820 yr of the Younger Dryas.

Radiocarbon ◽  
1983 ◽  
Vol 25 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Bernd Becker

The Hohenheim Tree-Ring Laboratory has extended the Holocene oak tree-ring chronology back to prehistoric times by analyses of subfossil tree trunks from gravel deposits along the rivers of central Europe. Hundreds of subfossil oaks can be collected each year because of widespread gravel quarrying. Despite this nearly continuous source of samples (at present, 2200 trees are analyzed), even within these deposits some limitations do exist in linking together a Holocene tree-ring sequence.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1161-1187 ◽  
Author(s):  
Konrad A Hughen ◽  
John R Southon ◽  
Chanda J H Bertrand ◽  
Brian Frantz ◽  
Paula Zermeño

This paper describes the methods used to develop the Cariaco Basin PL07-58PC marine radiocarbon calibration data set. Background measurements are provided for the period when Cariaco samples were run, as well as revisions leading to the most recent version of the floating varve chronology. The floating Cariaco chronology has been anchored to an updated and expanded Preboreal pine tree-ring data set, with better estimates of uncertainty in the wiggle-match. Pending any further changes to the dendrochronology, these results represent the final Cariaco 58PC calibration data set.


2007 ◽  
Vol 67 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Matthew W. Salzer ◽  
Malcolm K. Hughes

AbstractMany years of low growth identified in a western USA regional chronology of upper forest border bristlecone pine (Pinus longaeva and Pinus aristata) over the last 5000 yr coincide with known large explosive volcanic eruptions and/or ice core signals of past eruptions. Over the last millennium the agreement between the tree-ring data and volcano/ice-core data is high: years of ring-width minima can be matched with known volcanic eruptions or ice-core volcanic signals in 86% of cases. In previous millennia, while there is substantial concurrence, the agreement decreases with increasing antiquity. Many of the bristlecone pine ring-width minima occurred at the same time as ring-width minima in high latitude trees from northwestern Siberia and/or northern Finland over the past 4000–5000 yr, suggesting climatically-effective events of at least hemispheric scale. In contrast with the ice-core records, the agreement between widely separated tree-ring records does not decrease with increasing antiquity. These data suggest specific intervals when the climate system was or was not particularly sensitive enough to volcanic forcing to affect the trees, and they augment the ice core record in a number of ways: by providing confirmation from an alternative proxy record for volcanic signals, by suggesting alternative dates for eruptions, and by adding to the list of years when volcanic events of global significance were likely, including the mid-2nd-millennium BC eruption of Thera.


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Magdalena Opała

Abstract An annually resolved and absolutely dated ring-width chronology spanning 443 years has been constructed using the historical and living-tree Scots pine samples from the Upper Silesia, south of Poland. The constructed regional chronology, based on six object chronologies, covers the period of 1568-2010. It is composed of 178 wood samples with the mean correlation of 0.51, mean series length of 104 years and mean EPS of 0.85. In total, 65 extreme years were distinguished. Their inde-pendent verification, based on the historical and meteorological data, showed significant correlation with the exceptionally cold/mild winters as well as severe droughts. The comparison of the extreme years with the other Polish pine chronologies showed similarities in the years with the anomalous winter conditions. Some extreme years can be associated with the exceptional pluvial conditions; these years are common in the Central European hydroclimatic tree-ring records. The construction of this regional pine chronology enables for the absolute dating of many architectural monuments from investigated region. The application of the new chronology for the dating of local wood can support interpretations of changes in the environment of the Upper Silesian region. In the future it can also be used as the basis for climate reconstruction.


2014 ◽  
Vol 31 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Samuli Helama ◽  
Jari Holopainen ◽  
Mauri Timonen ◽  
Kari Mielikäinen

Abstract A near-millennial tree-ring chronology (AD 1147-2000) is presented for south-west Finland and analyzed using dendroclimatic methods. This is a composite chronology comprising samples both from standing pine trees (Pinus sylvestris L.) and subfossil trunks as recovered from the lake sediments, with a total sample size of 189 tree-ring sample series. The series were dendrochronologically cross-dated to exact calendar years to portray variability in tree-ring widths on inter-annual and longer scales. Al though the studied chronology correlates statistically significantly with other long tree-ring width chronologies from Finland over their common period (AD 1520-1993), the south-west chronology did not exhibit similarly strong mid-summer temperature or spring/early-summer precipitation signals in comparison to published chronologies. On the other hand, the south-west chronology showed highest correlations to the North Atlantic Oscillation indices in winter/spring months, this association following a dendroclimatic feature common to pine chronologies over the region and adjacent areas. Paleoclimatic comparison showed that tree-rings had varied similarly to central European spring temperatures. It is postulated that the collected and dated tree-ring material could be studied for wood surface reflectance (blue channel light intensity) and stable isotopes, which both have recently shown to correlate notably well with summer temperatures.


Radiocarbon ◽  
2014 ◽  
Vol 56 (04) ◽  
pp. S51-S59
Author(s):  
Charlotte L. Pearson ◽  
Tomasz Ważny ◽  
Peter I. Kuniholm ◽  
Katarina Botić ◽  
Aleksandar Durman ◽  
...  

A total of 272 oak (Quercussp.) samples have been collected from large subfossil trees dredged from sediment deposited by the Sava and various tributary rivers in the Zagreb region of northwestern Croatia, and in northern Bosnia and Herzegovina. Measurement series of tree-ring widths from these samples produced 12 groups, totaling 3456 years of floating tree-ring chronologies spread through the last ca. 8000 years. This work represents the first step in creating a new, high-resolution resource for dating and paleoenvironmental reconstruction in the Balkan region and potentially a means to bridge between the floating tree-ring chronologies of the wider Mediterranean region and the continuous long chronologies from central Europe.


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 933-941 ◽  
Author(s):  
Irina P Panyushkina ◽  
Steven W Leavitt ◽  
Alex Wiedenhoeft ◽  
Sarah Noggle ◽  
Brandon Curry ◽  
...  

The abrupt millennial-scale changes associated with the Younger Dryas (YD) event (“chronozone”) near the dawn of the Holocene are at least hemispheric, if not global, in extent. Evidence for the YD cold excursion is abundant in Europe but fairly meager in central North America. We are engaged in an investigation of high-resolution environmental changes in mid-North America over several millennia (about 10,000 to 14,000 BP) during the Late Glacial–Early Holocene transition, including the YD interval. Several sites containing logs or stumps have been identified and we are in the process of initial sampling or re-sampling them for this project. Here, we report on a site in central Illinois containing a deposit of logs initially thought to be of YD age preserved in alluvial sands. The assemblage of wood represents hardwood (angiosperm) trees, and the ring-width characteristics are favorable to developing formal tree-ring chronologies. However, 4 new radiocarbon dates indicate deposition of wood may have taken place over at least 8000 14C yr (6000–14,000 BP). This complicates the effort to develop a single floating chronology of several hundred years at this site, but it may provide wood from a restricted region over a long period of time from which to develop a sequence of floating chronologies, the timing of deposition and preservation of which could be related to paleoclimatic events and conditions.


Antiquity ◽  
2000 ◽  
Vol 74 (284) ◽  
pp. 304-307 ◽  
Author(s):  
Petra Dark

Recent revision of the radiocarbon calibration curve for the early Holocene has implications for the ‘absolute’ date of Mesolithic sites such as Star Carr, and for their relationship to the timescale of early Holocene environmental change.


Radiocarbon ◽  
1993 ◽  
Vol 35 (1) ◽  
pp. 125-135 ◽  
Author(s):  
Bernd Kromer ◽  
Bernd Becker

Radiocarbon calibration data derived from German oak chronologies, ranging back to 7200 BC, have been published in the previous Calibration Issue (Stuiver & Kra 1986). In recent years, the German oak chronology has been extended to 7938 BC (Becker, this issue). For earlier intervals, tree-ring chronologies must be based on pine, because oak re-emigrated to central Europe at the Preboreal/Boreal transition, at about 8000 BC. We have established a 1784-yr pine chronology centered in the Preboreal, and have linked it tentatively to the absolutely dated oak master. We present here calibration data based on this link, for the age range, 7145–9439 BC.


1965 ◽  
Vol 19 ◽  
pp. 101-121 ◽  
Author(s):  
Harold C. Fritts ◽  
David G. Smith ◽  
Marvin A. Stokes

AbstractRing-width chronologies in Douglas-fir, pinyon pine, and Utah juniper show some distinctly different characteristics and exhibit highly predictable relationships with variations in climate. Narrow rings in Douglas-fir are largely the result of low precipitation and high temperatures of the previous June, low precipitation during August through February, low precipitation and low temperatures during March through May, and low precipitation and high temperatures of the current June. Narrow rings in pinyon pine are largely a function of low precipitation from October through May, but high July temperatures near the end of the growing season may also exert an influence. Narrow rings in Utah juniper are the result of low precipitation and high temperatures during the previous October through November, low precipitation during December through February, and low precipitation and high temperatures during March through May. A biological model for these relationships is proposed. The tree-ring chronology from A.D. 1273 through 1285 exhibits a clearly defined drought which exceeds in length and intensity any dry period occurring since A.D. 1673. A comparison of the chronologies from species which are influenced differently by summer precipitation indicates that during this period both summers and winters must have been dry. However, the A.D. 1273-1285 drought at Mesa Verde was surpassed by six other droughts of greater intensity during the period A.D. 500–1300. The A.D. 1273–1285 drought may be only one of several factors in a chain of events which led to the decline of prehistoric population in the Mesa Verde.


Sign in / Sign up

Export Citation Format

Share Document