Jointed Goatgrass (Aegilops cylindrica) Ecology and Interference in Winter Wheat

Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 388-393 ◽  
Author(s):  
R. L. Anderson

Jointed goatgrass is a serious weed in winter wheat, and presently no herbicides are available for its selective control. This study examined the effect of time of emergence and removal on jointed goatgrass interference in winter wheat, as well as its rate of development and soil water extraction. The goal of this study was to suggest cultural practices that minimize jointed goatgrass interference in winter wheat. Jointed goatgrass development was identical to ‘Vona’ winter wheat in two crop seasons, even though precipitation differed drastically between seasons. Depth of soil water extraction of both species was also similar. Jointed goatgrass at 18 plants m−2reduced grain yield 27 and 17% when emerging 0 and 42 d after Vona, respectively. The relationship between time of jointed goatgrass emergence after winter wheat and grain yield loss was Y = 30.6–0.29X (X = days, r = 0.72), indicating that plants emerging in late fall still caused yield loss. Removing jointed goatgrass by early March prevented winter wheat grain yield loss. The interference data suggests that producers assess infestation levels and plan control measures in early March.

1994 ◽  
Vol 74 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Sylvia Borstlap ◽  
Martin H. Entz

Field trials were conducted over 4 site-years in southern Manitoba to compare the response of Katepwa wheat, Westar canola and Victoria field pea to zero tillage (ZT). The experimental design was a split plot with tillage system as the mainplot (ZT vs. conventional tillage (CT)) and crop species as the subplot. All crops received protection from insect, weed and disease pests. Tillage system had only a limited impact on crop dry matter accumulation or grain quality. Where differences were observed, crop performance was enhanced under ZT. Seasonal evapotranspiration (ET) was either reduced or unaffected by ZT, while ET efficiency (ETE: kg ha−1 mm−1 ET) was either increased or unchanged by the shift from CT to ZT. Higher ETE under ZT was attributed to less soil water evaporation. Significant tillage system × crop species (T × S) interactions for growth parameters, ET and ETE indicated that field pea often benefitted more than wheat or canola from ZT. A significant T × S interaction at one of the four sites indicated that water extraction between 30 and 90 cm was higher for pea and canola in the ZT compared with CT treatment, while soil water extraction by wheat was reduced under ZT. At a second site, lower ET for all three crops under ZT was attributed to reduced water use between 90 and 130 cm. Despite some effects of ZT on crop growth and water use, no significant tillage, T × S, or site × tillage interactions were observed for grain yield. It was concluded that under the conditions of this study (i.e. precipitation and temperature conditions close to the long-term average), Westar canola, Victoria field pea and Katepwa wheat were, for the most part, equally suited to ZT production. Key words: Soil water extraction, evapotranspiration efficiency, crop quality, grain yield, canopy development


2015 ◽  
Vol 155 ◽  
pp. 11-21 ◽  
Author(s):  
Baozhen Hao ◽  
Qingwu Xue ◽  
Thomas H. Marek ◽  
Kirk E. Jessup ◽  
Xiaobo Hou ◽  
...  

1991 ◽  
Vol 5 (1) ◽  
pp. 3-17 ◽  
Author(s):  
William W. Donald ◽  
Alex G. Ogg

Jointed goatgrass is a winter annual grass weed which is believed to have been introduced into North America as a contaminant in winter wheat seed. Although jointed goatgrass was first discovered in some states early in the 20th century, changing wheat production practices during the past 25 yr have encouraged its spread and increase. Winter wheat producers in the western United States are concerned about the lack of adequate selective control measures for this weed. Jointed goatgrass and wheat share the D chromosome in common and have similar growth habits. Jointed goatgrass lowers winter wheat yield by competing for growth requirements, reducing harvesting efficiency, and lowering crop quality by contaminating harvested grain. Jointed goatgrass is well adapted to stubble-mulch or reduced tillage crop production, particularly in regions where climate limits cropping options to the winter wheat-fallow rotation or continuous wheat. This review summarizes jointed goatgrass seed germination, dormancy, physiology, yield loss estimates in winter wheat, and both herbicidal and non-chemical methods of managing jointed goatgrass.


2020 ◽  
Vol 174 ◽  
pp. 104046 ◽  
Author(s):  
Sushil Thapa ◽  
Qingwu Xue ◽  
Kirk E. Jessup ◽  
Jackie C. Rudd ◽  
Shuyu Liu ◽  
...  

1984 ◽  
Vol 103 (1) ◽  
pp. 189-199 ◽  
Author(s):  
M. J. Goss ◽  
K. R. Howse ◽  
Judith M. Vaughan-Williams ◽  
M. A. Ward ◽  
W. Jenkins

SummaryIn each of the years from September 1977 to July 1982 winter wheat was grown on one or more of three clay soil sites (clay content 35–55%) in Oxfordshire where the climate is close to the average for the area of England growing winter cereals.The effects on crop water use of different soil management practices, including ploughing, direct drilling and subsoil drainage, are compared. Cultivation treatment had little effect on the maximum depth of water extraction, which on average in these clay soils was 1·54 m below the soil surface. Maximum soil water deficit was also little affected by cultivation; the maximum recorded value was 186±7·6 mm. Subsoil drainage increased the maximum depth of water extraction by approximately 15 cm and the maximum soil water deficit by about 17 mm.Generally soil management had little effect on either total water use by the crop which was found to be close to the potential evaporation estimated by the method of Penman, or water use efficiency which for these crops was about 52 kg/ha par mm water used.Results are discussed in relation to limitations to potential yield.


2009 ◽  
Vol 13 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Adriana L. da Silva ◽  
Isabeli P. Bruno ◽  
Klaus Reichardt ◽  
Osny O. S. Bacchi ◽  
Durval Dourado-Neto ◽  
...  

Basic information for a rational soil-water management of the coffee crop is still insufficient, particularly under irrigated conditions. Of great importance for the estimation of water requirements of coffee crops are their root distribuition and evapotranspiration crop coefficients. This study compares soil water extraction by roots of coffee plants of the variety "Catuaí Vermelho" (IAC-44), grown in Piracicaba, SP, Brazil, 3 to 5 years old, with direct measurements of root dry matter, showing a good agreement between both approaches, and confirming that most of the root system is distributed in the top soil layer (0-0.3 m) and that less than 10% of the root system reaches depths greater than 1.0 m. Calculated evapotranspiration crop coefficients are in agreement with those found in the literature, with an average of 1.1, independent of shoot dry matter, plant height and leaf area index.


Sign in / Sign up

Export Citation Format

Share Document