Soybean [Glycine max(L.)] Response to Lactofen

Weed Science ◽  
1993 ◽  
Vol 41 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Rex A. Wichert ◽  
Ronald E. Talbert

Field studies were conducted in 1987 and 1988 to evaluate the vegetative response of soybeans to early postemergence applications of lactofen and to measure crop recovery. Soybean injury 4 d after treatment (DAT) averaged 29 and 34% with 0.22 and 0.44 kg ai ha−1of lactofen, respectively. Severity of leaf injury depended on leaf size at the time of lactofen application. Leaf area of soybean trifoliates one through three were reduced 30 to 45% at 12 DAT but recovered by 26 DAT. Later emerging trifoliates were not affected. Fresh weights of lactofen-treated soybeans were less than those of untreated plants 4, 8, and 16 DAT, and dry weights were less at 16 and 26 DAT. Lactofen reduced stomatal conductance of expanded leaves but had no effect on unexpanded leaves. Soybean yields did not differ with lactofen treatment.

In some rice dominated tropical regions, such as in Indonesia, soybeans are an increasingly important dry season crop which are often exposed to periods of drought stress. The morphological and physiological responses, which could lead to some tolerance to water stress, may vary between varieties. By better understanding the plant response to drought stress and finding if these responses vary between varieties better dry season production could be achieved. An experiment was conducted to compare the response of four varieties of soybean (glycine max (l.) Meer.) to five watering regimes, with the objective of determining the response of common soybean varieies across a wide range of water supply. Plant response to water supply was measured using gas exchange measurement with the rate of photo synthesis decreasing progressively from well watered to dry conditions across the four varieties. A correlation of stomatal conductance and transpiration rate has a close relationship with photosynthetic rate, where stomatal conductance of Burangrang variety has higher value than other varieties. Varieties Burangrang and Argomulyo stomatal conductances are higher value than those of Anjasmoro and Grobogan varieties. In a deficit of water condition, the Argomulyo varieties have a higher value of transpiration efficiency and significantly different than the other three varieties. The transpiration efficiency significantly declined for treatments watered once every two or three weeks. The transpiration efficiency values of Agromulyo and Burangrang varieties were significantly higher than another varieties.


1998 ◽  
Vol 25 (7) ◽  
pp. 819 ◽  
Author(s):  
Michael J. Robertson ◽  
Graham D. Bonnett ◽  
R. Michael Hughes ◽  
Russell C. Muchow ◽  
James A. Campbell

Canopy development is an important determinant of crop radiation interception, and in the absence of stress is mainly driven by temperature. The responses to temperature of the component processes of canopy dynamics in sugarcane: leaf appearance, leaf size, tillering, and leaf senescence, were analysed for the commercial Australian cultivar, Q117. Data were derived under optimal growth conditions from controlled environments, and from irrigated field studies in subtropical and tropical locations. Regression of number of fully-expanded leaves in field-grown plants against cumulative thermal time revealed that the thermal time between the appearance of successive leaves increased as a function of leaf number, such that leaf 1 required 86˚Cd and leaf 40 required 160˚Cd. At any moment, on average there were 3.7 leaves still expanding on the stalks. Functions describing leaf appearance gave acceptable prediction of the time course of leaf appearance taken from independent datasets of field-grown plant and ratoon crops. Leaf size increased with leaf position, with the largest leaves observed at approximately leaf 17 and above. Combining functions describing leaf appearance and leaf size as a function of leaf position allowed estimation of leaf area index (LAI) of main stems in plant and ratoon crops in subtropical and tropical environments. Tiller LAI, derived by difference, accounted for 60–90% of total LAI at the 5- leaf stage, declining to 20–50% at the 15-leaf stage. Plant and ratoon crops were similar in terms of the amount and proportion of tiller LAI. Combining data from all field studies indicated under potential growth conditions, leaf senescence was closely related to leaf production. The functions derived in this study give a basis for simulating canopy dynamics under potential growth conditions in sugarcane, though the extent of genotypic variation for the key parameters and their modification by stress remains to be assessed.


1987 ◽  
Vol 22 (3) ◽  
pp. 212-223 ◽  
Author(s):  
M. Z. Alam ◽  
W. C. Yearian ◽  
S. Y. Young ◽  
A. J. Mueller

Consumption of greenhouse and field grown ‘Bragg’ soybean, Glycine max (L.) Merrill, foliage was determined for Pseudoplusia includens (Walker) larvae treated with varying dosages of Pseudoplusia nuclear polyhedrosis virus to produce different mortality levels. Uninfected P. includens larvae consumed an average of 158.3 and 78.7 cm2 of greenhouse and field grown soybean foliage, respectively. More than 84% of the total leaf area consumed was by the final two larval instars. The amount of foliage consumed by larvae infected as first (greenhouse and field) or second (greenhouse) instars was significantly reduced with increasing NPV mortality level. Foliage consumption by larvae infected as second (field) and third (greenhouse and field) instars at all dosage levels was significantly reduced when compared to the untreated checks, but differences in foliage consumption at the two lower mortality levels were not significant. Frass produced by infected and uninfected larvae was significantly correlated with the amount of greenhouse or field grown foliage consumed.


Author(s):  
Ogbuehi HC ◽  
Ibe PK

A pot experiment was conducted under rainfed condition to study the effect of water hyacinth compost on the morpho-physiological parameters of soybean (Glycine max L.) at the Teaching and Research Farm of Faculty of Agriculture and Veterinary Medicine, Imo State University, Owerri. The treatments were control (T1) 100g (T2), 150g (T3) and 200g (T4) of water hyacinth compost and replicated four times. The treatments were arranged in Complete Randomized Design (CRD). The parameters measured were plant height, number of leaves, leaf area (cm2), leaf area index, relative growth rate (RGR), Net assimilation rate (NAR), shoot dry weight(g), yield and yield components (Number of pods, pods weight, 100 seed weight). The results obtained indicated that T3 significantly produced highest plant height (57.6cm) compare to control. While it was observed that T4 (200g) significantly produced the highest number of leaves (233.25), leaf area (631.80cm2), shoot dry weight (15.445g), number of pods (129.75), pod weights (25.38g) seed weight (7.23g) and yield (0.72kg/ha) relative to control and other treatment levels. Root parameters were also significantly improved by the rates of water hyacinth application compared to control. It will be worthy to note that there was no nodulation perhaps that was why the yield was poor. The results showed that soybean growth can effectively be improved with incorporation of water hyacinth into soil.


1992 ◽  
Vol 72 (2) ◽  
pp. 383-390 ◽  
Author(s):  
A. Djekoun ◽  
C. Planchon

Yield limitation in soybean (Glycine max L. Merr.) can result from decreases in photosynthesis and N2 fixation during periods of water deficiency. In this study, the relationships among stomatal conductance, photosynthesis and N2 fixation were analyzed in connection with drought tolerance of genotypes. Plants were grown in pots and exposed to field conditions. Carbon dioxide exchange rate was measured by gas analysis and nodule activity by the acetylene reduction method. Leaf water status was determined with a pressure bomb, and nodule water potential and leaf osmotic potential were measured psychrometrically. The differing tolerances of the cultivars Kingsoy and Hodgson to leaf water deficit resulted in a more or less developed ability of the lower side of the leaf to maintain good stomatal conductance during water stress. Stomatal conductance affects photosynthetic rate directly and acetylene reduction activity indirectly. Early stomatal closure, by limiting H2O exchange, contributes to conservation of nitrogenase activity. On the contrary, maintenance of high conductance during a water stress decreases soil water availability and nodule water content, which in turn has a decisive and limiting effect on acetylene reduction activity. Thus, if tolerance at low leaf water potentials associated with osmotic adjustment is an important drought mechanism for maintaining photosynthetic processes under water-limited conditions, the result would be obtained at the expense of symbiotic N2 fixation.Key words: Glycine max L. Merr., nitrogenase activity, photosynthesis, drought stress, soybean


AGRICA ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 96-105
Author(s):  
Murdaningsih Murdaningsih ◽  
Marsianus Nate Ugha

This research aims to know the effect as well as the optimum rates of manure of urine cow bio to the growth and yield of the soybean plant. The design used in this study was Randomized Block Design and the treatment used is U0 (without bio urine manure), U1 (1375 litres of bio urine manure ha-1 or 550 ml plots-1), U2 (bio urine manure of 2750 litre ha-1 or 1100ml plots -1), U3 (bio urine manure 4125 litre ha-1 or 1650 ml plot-1), and U4 (bio urine manure of 5500 litre ha-1 or 2200 ml plot-1). Variable observation in this study is the height of the plant 33.8 cm, leaf number 2.90 strands, leaf area 1.17cm2, the weight of fresh residues tan-114,74 gr, dry oven weight of residue tan-1 15.50 gr, dry oven weight of residue  ha-1 15.50kg, the number of pods 9.44 soybean, weight of 100 grain of soybean 1 0.91 gr, the weight of the seed tan-110.30 gr, seed dry weight ha-110, 30 kg, harvest index of 4.88 and optimum dosage of the manure of urine cow bio is 5500 litres ha-1 can increase the growth and yield of soybeans.


Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 45 ◽  
Author(s):  
Juwarno Juwarno ◽  
Siti Samiyarsih

Current study was aimed to explore both anatomical and molecular responses of 3 soy bean cultivars (Mahameru, Slamet and Detam) which was given salinity stress. Data of the Mahameru cultivar showed that the widest  stomata  on upper epiderm 11.38 µm, the thickest upper epiderm was 10.71µm, but  the thickest of lower epiderm was only 9.98 µm, the highest density of stomata on lower epiderm was 13.66 per mm2 leaf area, and the thickest mesophyll was 110.37 µm. Molecular marker applying OPA-2 primer with RAPD technique showed the Detam and Slamet cultivars were having different bands one to each other even with the Mahameru cultivar. While the application of OPA-4 primer with the same technique showed there were no genetically different on Mahameru cultivar between control and  treatment 80 mM NaCl. The OPA-8 primer showed that the control block of Slamet cultivar  was different from either control block of others as well as treatment block of 80 mM NaCl. The use of OPA-18 primer showed that the Slamet cultivar of the control block  and so its 80 mM NaCl block was different from Detam and Mahameru, where the 500th base of Slamet cultivar did not have DNA band.


Author(s):  
Abiyot Abeje ◽  
Getachew Alemayehu ◽  
Tesfaye Feyisa

Background: The productivity of soybean in Assosa Zone particularly in Assosa and Bambassi districts is very low due to poor soil fertility management practices which resulted in severe soil acidity and low N-fixing inoculant in the soil. Hence, this experiment was conducted to evaluate the influence of biofertilizer and inorganic fertilizers on nodulation, growth and yield of soybean [Glycine max (L.) Merrill]. Methods: During the period 2019-2020 factorial combinations of four levels of biofertilizer inoculants [without inoculant (B1), SB12 inoculant (B2), MAR1495 inoculant (B3) and SB12 plus MAR1495 inoculants (B4); and four inorganic fertilizer types NP (F1), NPS (F2), NPB (F3) and NPSB (F4) at their recommended rates for soybean] were laid out in a randomized complete block design (RCBD) with three replications in Assosa and Bambassi districts, Assosa Zone, Western Ethiopia. Number of effective nodules per plant, leaf area index and grain yield were collected following the standard procedures and were analyzed using SAS software version 9.1.3 and significant mean differences were separated using Duncan’s multiple range test (DMRT) at 5% significance level. Result: Number of effective nodules per plant, leaf area index and grain yield were highly significantly (P less than 0.01) affected by the interactions of biofertilizer and inorganic fertilizers at both locations and years. Thus, the maximum grain yield (2621.67 kg) was obtained from (SB12+MAR1495) + NPSB at Assosa and the maximum grain yield (2460.20 kg) was obtained from SB12+NPS at Bambassi. Hence, (SB12+MAR1495) + NPSB and SB12+NPS are recommended for higher soybean grain yield for Assosa and Bambassi districts and similar agro-ecologies, respectively.


Sign in / Sign up

Export Citation Format

Share Document