MSMA Antagonizes Glyphosate and Glufosinate Efficacy on Broadleaf and Grass Weeds

2007 ◽  
Vol 21 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Clifford H. Koger ◽  
Ian C. Burke ◽  
Donnie K. Miller ◽  
J. Andrew Kendig ◽  
Krishna N. Reddy ◽  
...  

Field and greenhouse studies were conducted to investigate the compatibility of MSMA in a tank mixture with glyphosate or glufosinate for broadleaf and grass weed control. Glyphosate, glufosinate, and MSMA were evaluated at 0.5×, 1×, and 2× rates, with 1× rates of 0.84 kgae/ha, 0.5 kgai/ha, and 2.2 kgai/ha, respectively. Glyphosate and glufosinate provided similar levels of control for most weed species and were often more efficacious than MSMA alone. Glyphosate controlled Palmer amaranth better than glufosinate. Glufosinate controlled hemp sesbania, pitted morningglory, and ivyleaf morningglory better than glyphosate at one location. Weed control was not improved with the addition of MSMA to glyphosate or glufosinate when compared with either herbicide alone. MSMA antagonized glyphosate efficacy on barnyardgrass, browntop millet, hemp sesbania, Palmer amaranth, and redroot pigweed. MSMA antagonized glufosinate efficacy on browntop millet, hemp sesbania, ivyleaf morningglory, johnsongrass, Palmer amaranth, pitted morningglory, prickly sida, redroot pigweed, and velvetleaf. Antagonism of glyphosate or glufosinate by MSMA was often overcome by applying the 2× rate of either herbicide alone. MSMA is not a compatible tank-mixture partner with glyphosate or glufosinate for weed control in cotton.

1997 ◽  
Vol 11 (2) ◽  
pp. 354-362 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
James L. Griffin ◽  
Patrick A. Clay ◽  
P. Roy Vidrine ◽  
...  

Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.


2005 ◽  
Vol 19 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Jeffrey W. Branson ◽  
Kenneth L. Smith ◽  
James L. Barrentine

Field studies were conducted in 2000 and 2001 at Rohwer, AR. Trifloxysulfuron (5.3 and 8 g ai/ha) and pyrithiobac (70 g ai/ha) were applied preemergence (PRE) and postemergence (POST) broadcast at the two- to three-leaf (EP) and three- to four-leaf (MP) cotton growth stages. Both materials were also applied POST in combination with glyphosate at 560 g ae/ha or bromoxynil at 560 g ai/ha at both growth stages. Trifloxysulfuron applied EP or MP at 8 g/ha provided greater control of sicklepod and pitted morningglory 28 d after application (DAA) than trifloxysulfuron at 5.3 g/ha or pyrithiobac at 70 g/ha; however, control of prickly sida was greater with pyrithiobac than with trifloxysulfuron at either rate. Glyphosate alone controlled sicklepod, prickly sida, and pitted morningglory greater than 80%. The addition of trifloxysulfuron at 8 g/ha and pyrithiobac at 70 g/ ha increased control of all species over glyphosate alone 28 DAA. Bromoxynil at 560 g/ha controlled pitted morningglory and hemp sesbania at all application timings; however, sicklepod and Palmer amaranth control was less than 50% with bromoxynil applied alone. When bromoxynil was applied in combination with trifloxysulfuron at either rate, control of sicklepod and Palmer amaranth increased to 80% or greater at all application timings. Trifloxysulfuron has the potential to complement both the glyphosate-resistant and bromoxynil-resistant weed control programs by providing control of less susceptible weeds and by providing residual control to both programs.


2008 ◽  
Vol 22 (3) ◽  
pp. 459-466 ◽  
Author(s):  
Andrew J. Price ◽  
Clifford H. Koger ◽  
John W. Wilcut ◽  
Donnie Miller ◽  
Edzard Van Santen

Field experiments were conducted to evaluate weed control provided by glyphosate, glufosinate, and MSMA applied alone or in mixture with residual and nonresidual last application (LAYBY) herbicides. Herbicide treatments included glyphosate early postemergence (EPOST) alone or followed by glyphosate, glufosinate, or MSMA late-postemergence (LPOST) alone or tank-mixed with one of the following LAYBY herbicides: carfentrazone-ethyl at 0.3 kg ai/ha, diuron at 1.12 kg ai/ha, flumioxazin at 0.07 kg ai/ha, fluometuron at 1.12 kg ai/ha, lactofen at 0.84 kg ai/ha, linuron at 0.56 kg ai/ha, oxyfluorfen at 1.12 kg ai/ha, prometryn at 1.12 kg ai/ha, or prometryn + trifloxysulfuron at 1.12 kg ai/ha + 10 g ai/ha. Residual herbicides were also applied alone LPOST. Weeds evaluated included barnyardgrass, broadleaf signalgrass, coffee senna, entireleaf morningglory, hemp sesbania, ivyleaf morningglory, johnsongrass, large crabgrass, Palmer amaranth, pitted morningglory, prickly sida, redroot pigweed, sicklepod, smooth pigweed, spiny amaranth, and velvetleaf. Treatments containing MSMA provided lower average weed control compared to those containing glyphosate or glufosinate, and residual herbicides applied alone provided inadequate weed control compared to mixtures containing a nonresidual herbicide. Across 315 of 567 comparisons (55%), when a LAYBY herbicide was added, weed control increased. The most difficult to control weed species at all locations was pitted morningglory. Barnyardgrass and hemp sesbania at the Mississippi location and hemp sesbania at the Louisiana location were collectively difficult to control across all treatments as well.


1988 ◽  
Vol 2 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Jerome M. Green ◽  
Timothy T. Obrigawitch ◽  
James D. Long ◽  
James M. Hutchison

Metribuzin and the ethyl ester of chlorimuron were evaluated alone and in combination for preemergence broadleaf weed control in soybeans. Neither herbicide alone controlled all broadleaf weeds tested, but combinations showed both complementary and additive action. Two field studies quantified these interactions on broadleaf weeds and showed that low rates of either herbicide alone controlled Pennsylvania smartweed and redroot pigweed. Metribuzin was more effective than chlorimuron in controlling prickly sida and hemp sesbania, while chlorimuron was more effective on common cocklebur, sicklepod, and ivyleaf and pitted morningglories. Additive action was most important on velvetleaf, sicklepod, annual morningglories, and hemp sesbania. Because the components were both additive and complementary, a range of mixture rates and ratios were more effective for weed control than either herbicide alone.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


2016 ◽  
Vol 30 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Pratap Devkota ◽  
Fred Whitford ◽  
William G. Johnson

Water is the primary carrier for herbicide application, and carrier-water–related factors can influence herbicide performance. In a greenhouse study, premixed formulation of glyphosate plus dicamba was mixed in deionized (DI) water at 5, 18, 31, 44, or 57 C and applied immediately. In a companion study, glyphosate and dicamba formulation was mixed in DI water at temperatures of 5, 22, 39, or 56 C and sprayed after the herbicide solution was left at the respective temperatures for 0, 6, or 24 h. In both studies, glyphosate plus dicamba was applied at 0.275 plus 0.137 kg ae ha−1(low rate), and 0.55 plus 0.275 kg ha−1(high rate), respectively, to giant ragweed, horseweed, Palmer amaranth, and pitted morningglory. Glyphosate plus dicamba applied at a low rate with solution temperature of 31 C provided 14% and 26% greater control of giant ragweed and pitted morningglory, respectively, compared to application at solution temperature of 5 C. At both rates of glyphosate and dicamba formulation, giant ragweed and pitted morningglory control was 15% or greater at solution temperature of 44 C compared to 5 C. Weed control was not affected with premixture of glyphosate and dicamba applied ≤ 24 h after mixing herbicide. When considering solution temperature, glyphosate and dicamba applied at low rate provided 13 and 6% greater control of Palmer amaranth and pitted morningglory, respectively, with solution temperature of 22 C compared to 5 C. Similarly, giant ragweed control was 8% greater with solution temperature of 39 C compared to 5 C. Glyphosate and dicamba applied at high rate provided 8% greater control of giant ragweed at solution temperature of 22 or 39 C compared to 5 C. Therefore, activity of premixed glyphosate and dicamba could be reduced with spray solution at lower temperature; however, the result is dependent on weed species.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 568-572 ◽  
Author(s):  
G. A. Buchanan ◽  
J. E. Street ◽  
R. H. Crowley

Influence of time of planting and distance from the cotton row of pitted morningglory (Ipomoea lacunosaL.), prickly sida (Sida spinosaL.), and redroot pigweed (Amaranthus retroflexusL.) on yield of seed cotton (Gossypium hirsutumL. ‘Stoneville 213’) was determined on Decatur clay loam during 1975 through 1978. Weed growth was measured in 1977 and 1978. Seeds of the three weed species were planted 15, 30, or 45 cm from the cotton row at time of planting cotton or 4 weeks later. Weeds planted 4 weeks after planting cotton grew significantly less than did weeds planted at the same time as cotton. When planted with cotton, redroot pigweed produced over twice as much fresh weight as did prickly sida or pitted morningglory. The distance that weeds were planted from the cotton row did not affect weed growth in 1978, but did in 1977. The distance that weeds were planted from the cotton row did not affect their competitiveness in any year as measured by yield of cotton. However, in each year, yields of cotton were reduced to a greater extent by weeds planted with cotton than when planted 4 weeks later. In 3 of 4 yr, there were significant differences in competitiveness of each of the three weed species with cotton.


2007 ◽  
Vol 21 (4) ◽  
pp. 997-1001 ◽  
Author(s):  
Derek M. Scroggs ◽  
Donnie K. Miller ◽  
James L. Griffin ◽  
Lawrence E. Steckel ◽  
David C. Blouin ◽  
...  

Field studies were conducted 2004 and 2005 to evaluate weed control following POST applications of glyphosate in combination with eitherS-metolachlor (premix formulation), pyrithiobac, or trifloxysulfuron in conjunction with glyphosate in second-generation glyphosate-resistant cotton (Roundup Ready Flex). These herbicides were applied in combination with glyphosate in a two-application program at the 2-leaf (LF) (followed by glyphosate alone at the 10-LF growth stage), 6-LF (following glyphosate alone at the 2-LF growth stage), or 10-LF (following glyphosate alone at the 2-LF growth stage) cotton growth stages. No differences in weed control between residual herbicide were observed for goosegrass, hemp sesbania, Johnsongrass, Palmer amaranth, redroot pigweed, sicklepod, or smellmelon. Optimum control of barnyardgrass and browntop millet was achieved with glyphosate plusS-metolachlor. No differences were observed among application timings for control of goosegrass, hemp sesbania, Johnsongrass, pitted morningglory, and smellmelon. Control of barnyardgrass, browntop millet, Palmer amaranth, redroot pigweed, and sicklepod was optimized with residual herbicide application at the 2- or 10-LF timing. No yield differences were observed between residual herbicides, and seed cotton yield averaged 2,800 kg/ha. Yield was maximized when residual herbicide was applied at the 2- or 10-LF growth stage (2,960 to 2,730 kg/ha). Analysis based on numerical yield at particular residual-herbicide application timings and calculated yield for each timing based on the percentage of a standard three-application glyphosate program indicated the most consistent residual-herbicide timing for optimizing yield in a reduced-input Roundup Ready Flex weed-control program occurred at the two-leaf growth stage. All reduced-input programs, however, resulted in cotton yield of at least 93% of that obtained with the standard program.


Sign in / Sign up

Export Citation Format

Share Document