Postemergence herbicide application timing effects on annual grass control and corn (Zea mays) grain yield

Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 138-143 ◽  
Author(s):  
Larry S. Tapia ◽  
Thomas T. Bauman ◽  
Robert G. Harvey ◽  
James J. Kells ◽  
George Kapusta ◽  
...  

Giant foxtail, woolly cupgrass, and wild-proso millet infest millions of hectares of land devoted to corn production in the midwestern U.S. Control of these species and effects on corn grain yield were evaluated at various timings using POST applications of nicosulfuron vs. applications of various PRE herbicides at 17 locations across the midwestern U.S. in 1992 and 1993. Nicosulfuron applied to 5 to 10 cm giant foxtail and woolly cupgrass provided greater control than that observed with selected PRE herbicides. Giant foxtail control with nicosulfuron averaged 88%, and control of woolly cupgrass averaged 77% across all sites. Nicosulfuron, applied to 5 to 10 cm wild-proso millet, provided a level of control similar to that of selected PRE herbicides. Corn grain yield was greater when giant foxtail was controlled POST with nicosulfuron vs. PRE control with selected soil-applied herbicides. Corn grain yields were similar when nicosulfuron was applied POST to 5 to 10 cm woolly cupgrass or wild-proso millet vs. PRE control of these grass weeds. Across a broad range of geographical locations, nicosulfuron, applied POST to 5 to 10 cm tall grass, provided greater or similar levels of weed control vs. the selected PRE herbicides, with no deleterious effect on grain yield.

1997 ◽  
Vol 11 (1) ◽  
pp. 171-175 ◽  
Author(s):  
Thomas L. Rabaey ◽  
R. Gordon Harvey

Efficacy of primisulfuron and reduced rates of nicosulfuron on woolly cupgrass, wild-proso millet, and giant foxtail in field corn was evaluated in 1994 and 1995. Nicosulfuron was applied at 18, 27, and 36 g ai/ha alone and with 20 g ai/ha primisulfuron. Woolly cupgrass control from nicosulfuron at 18 and 27 g/ha was less than control from 36 g/ha (79% and 84% vs. 90%, respectively). Woolly cupgrass control was 5% greater when primisulfuron was combined with nicosulfuron at 27 and 36 g/ha than when nicosulfuron was applied alone. Corn grain yields were similar among all nicosulfuron plus primisulfuron treatments applied to control woolly cupgrass in 1994. In 1995, corn grain yield was increased 900 kg/ha when primisulfuron was combined with nicosulfuron at 18 g/ha compared to nicosulfuron applied at the same rate alone. Wild-proso millet control 3 WAT with nicosulfuron at 18 g/ha was less than control with nicosulfuron at 36 g/ha. Wild-proso millet control 8 WAT with nicosulfuron alone was greater than when nicosulfuron at any rate was applied with primisulfuron. No differences in corn grain yields were observed across nicosulfuron rates or combinations with primisulfuron to control wild-proso millet either year. Giant foxtail control and corn grain yield were not affected by nicosulfuron rate or combined applications of nicosulfuron and primisulfuron either year.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


1997 ◽  
Vol 11 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Thomas L. Rabaey ◽  
R. Gordon Harvey

Field studies were conducted in 1994 and 1995 to determine the contribution of PRE applications of alachlor, metolachlor, acetochlor, SAN 582H, or pendimethalin on woolly cupgrass and wild-proso millet control when followed by POST nicosulfuron at 0, 0.018, 0.027, or 0.036 kg ai/ha. Sequential treatments controlled woolly cupgrass and wild-proso millet greater than single applications of PRE herbicides, which when applied alone resulted in the least wild-proso millet control and lowest corn grain yield. Lack of complete woolly cupgrass control with POST nicosulfuron alone resulted in corn grain yield that was less than with sequential treatments but was equal to PRE treatments. Wild-proso millet control with nicosulfuron at 0.027 kg/ha resulted in corn grain yield that was less than with sequential treatments, but greater than with all PRE treatments except for SAN 582H. All PRE herbicides, regardless of early season performance, when followed by nicosulfuron resulted in woolly cupgrass and wild-proso millet control that was similar. Woolly cupgrass seed production compared to the nontreated check was reduced 98% with acetochlor followed by nicosulfuron. Sequential treatments provided the most consistent woolly cupgrass and wild-proso millet control, the highest corn grain yield, and the greatest reduction in woolly cupgrass and wild-proso millet seed production.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 975-986 ◽  
Author(s):  
R. Jason Cathcart ◽  
Clarence J. Swanton

Environmental legislation may impose limitations on the quantity of nitrogen (N) used in corn production on the basis of soil type and ground water flow. If N rates are reduced, this might influence the relative competitiveness of weed species. Therefore, the objectives of this research were to develop a surface response model to provide estimations of the effect of differing N rates on threshold values of green foxtail in corn and to use this model as a theoretical framework for hypothesis testing. Field experiments were conducted from 1999 to 2001 to examine the interaction of N rate and green foxtail density on corn grain yield. The experiment was designed as a two-factor factorial with N levels ranging from 0 to 200 kg N ha−1and targeted green foxtail densities ranging from 0 to 300 green foxtail plants m−2. The addition of up to 200 kg N ha−1increased corn grain yield in both weed-free and weedy treatments. Corn yield loss attributed to green foxtail ranged from 35 to 40% at 0 kg N ha−1to 12 to 17% at 200 kg N ha−1. Ridge analysis of the response surfaces indicated that optimal corn grain yield could be achieved at derived values of 131 to 138 kg N ha−1while maintaining a green foxtail density of 8 to 9 green foxtail plants m−2on a sandy soil with less than 2% organic matter. The analyses of simulation results led to the generation of hypotheses of practical relevance to N management. On the basis of the generated hypotheses, a legislated reduction in N or an increase in the cost of N fertilizer would result in a lower threshold value for green foxtail in corn. If legislation were to ban the use of all herbicides in corn production, higher N rates or an increase in mechanical weed control measures would be required to offset yield losses caused by green foxtail. The human health and environmental consequences of such legislation would be significant.


1994 ◽  
Vol 8 (4) ◽  
pp. 696-702 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz ◽  
Mustajab Khan ◽  
Joseph L. Matthews

Field experiments were conducted in 1988 and 1989 to (i) evaluate annual weed control with nicosulfuron applied at rates of 17 to 70 g ai/ha with several additives and (ii) evaluate annual weed control with nicosulfuron applied at rates of 17 to 105 g/ha at three corn growth stages. In 1988, in the adjuvant study, giant foxtail control increased linearly with no additive or with urea ammonium nitrate as the rate of nicosulfuron increased. Petroleum oil concentrate, nonionic surfactant, and a combination of either petroleum oil concentrate or nonionic surfactant with urea ammonium nitrate applied with nicosulfuron increased giant foxtail control to 90% or greater regardless of rate both years. Nicosulfuron at all rates with no additive and in combination with all additives controlled 93% or more of redroot pigweed and Pennsylvania smartweed both years. Corn grain yield was related to the level of giant foxtail control. In the rate by corn growth stage study, giant foxtail, redroot pigweed, and Pennsylvania smartweed control was 90% or greater regardless of nicosulfuron rate or application stage both years. Corn grain yield was related more to the duration of weed competition than the level of weed control with grain yield 8 to 12% lower with nicosulfuron applied at the V7 growth stage compared with the V3 or V5 growth stage.


Weed Science ◽  
1989 ◽  
Vol 37 (4) ◽  
pp. 600-603 ◽  
Author(s):  
Jon P. Chernicky ◽  
Roger Gast ◽  
Fred W. Slife

Corn and giant foxtail response to foliar-applied sethoxydim at 67, 134, and 200 g ai/ha was evaluated in field studies. Sethoxydim applied over the top of corn (60 cm tall) caused greater whorl damage and reduced corn grain yield more than postdirected sethoxydim. Sethoxydim controlled giant foxtail best when used in conjunction with a preemergence application of metolachlor (2.2 kg/ha) and atrazine (1.7 kg/ha).


Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 510-515 ◽  
Author(s):  
Ryan M. Terry ◽  
Paul T. Marquardt ◽  
James J. Camberato ◽  
William G. Johnson

Volunteer corn (VC) in hybrid corn has become more prevalent in recent years and can reduce grain yield. Nitrogen (N) management can influence VC interference in corn. Field experiments were established to determine the effects of N fertilizer management and VC interference on hybrid corn growth and grain yield. Treatments consisted of three VC densities (control, 0 plants m−2; low density, 1 plant m−2; high density, 4 plants m−2) and six N fertilizer treatments (0 kg N ha−1, 67 kg N ha−1 at planting, 67 kg N ha−1 at planting + 133 kg N ha−1 at V5 corn growth stage, 67 kg N ha−1 at planting + 133 kg N ha−1 at V10 corn growth stage, 200 kg N ha−1 at V5 corn growth stage, and 200 kg N ha−1 at V10 corn growth stage). The effect of VC on hybrid corn was dependent on N rate. When 200 kg N ha−1 was applied, regardless of application timing, hybrid corn dry weight, hybrid corn N content, and hybrid corn grain yield were reduced by the high VC density. However, when VC grain yield was added to hybrid corn grain yield, VC density did not affect total grain yield. When 0 and 67 kg N ha−1 were applied, neither hybrid corn dry weight nor hybrid corn N content was affected by either VC density, but the high VC density reduced hybrid corn grain yield for both N rates by 19% and total grain yield by 9 and 10%, respectively. Application timing of N fertilizer had no effect on hybrid corn dry weight, N content, or grain yield. However, late N fertilizer applications (200 kg N ha−1 at V10 and 67 kg N ha−1 at planting +133 kg N ha−1 at V10) resulted in greater VC N content, VC grain yield, and total yield. Assuming the harvestability of VC, the ability of a late N treatment (V10) to maximize total grain yield allows growers to use a late N application to reduce the competitive effects of VC in hybrid corn.


2007 ◽  
Vol 21 (4) ◽  
pp. 900-909 ◽  
Author(s):  
Robert G. Wilson ◽  
Stephen D. Miller ◽  
Philip Westra ◽  
Andrew R. Kniss ◽  
Phillip W. Stahlman ◽  
...  

A field trial was conducted for 6 yr (1998 through 2003) at Scottsbluff, NE, to measure weed shifts following multiple applications of two rates of glyphosate or alternating glyphosate with nonglyphosate treatments in continuous corn or in a crop rotation of corn, sugarbeet, and spring wheat with all three crops resistant to glyphosate. After 6 yr, plant densities of common lambsquarters, redroot pigweed, hairy nightshade, and common purslane increased in the crop-rotation treatment compared with continuous corn. There were four weed control subplot treatments consisting of two in-crop applications of glyphosate at 0.4 or 0.8 kg ae/ha each spring, alternating two applications of glyphosate at 0.8 kg/ha one year with a nonglyphosate treatment the next year, or a nonglyphosate treatment each year. The composition of the weed population averaged across all four treatments shifted from kochia and wild proso millet to predominately common lambsquarters. After 3 yr of using glyphosate at 0.4 kg/ha twice each year, common lambsquarters density increased compared with that in the 0.8 kg/ha rate of glyphosate or alternating glyphosate treatments. By the sixth year, the density of common lambsquarters in the glyphosate at 0.4 kg/ha treatment had increased to the extent that corn grain yield was reduced 43% compared with corn grain yield in the 0.8 kg/ha glyphosate treatment. Using glyphosate at either rate for 6 yr decreased the densities of kochia, wild proso millet, and longspine sandbur, did not alter densities of redroot pigweed and green foxtail, and increased the density of hairy nightshade. In the low-rate treatment of glyphosate, the number of common lambsquarters seeds in the seed bank were 134 seeds/kg soil in 1998, declined to 15 seeds/kg by 2002, but began to increase in 2003 as the densities of plants not controlled by glyphosate increased.


Sign in / Sign up

Export Citation Format

Share Document