scholarly journals Sudden changes in the intensity of high energy X-rays from Sco X-1

1970 ◽  
Vol 37 ◽  
pp. 104-106
Author(s):  
P. C. Agrawal ◽  
S. Biswas ◽  
G. S. Gokhale ◽  
V. S. Iyengar ◽  
P. K. Kunte ◽  
...  

In this note we wish to report briefly the observation of sudden changes in the intensity of Sco X-1 by a factor of about 3 recorded in the energy interval 29.9–52.3 keV on December 22, 1968 between 04 h 27 m and 05 h 53 m UT. The observation was made with an X-ray telescope flown in a balloon from Hyderabad, India. The balloon was launched at 0200 hr UT and reached the ceiling of 7.5 g/cm2 of residual atmosphere at 0435 hr UT. The X-ray telescope consisted of a NaI(T1) crystal with an area of 97.3 cm2 and thickness 4 mm, surrounded by both active and passive collimators. The telescope was mounted on an oriented platform which was programmed to look in four specified directions successively, of azimuths, Φ=0°, 110°, 180° and 310° (Φ=0° being North and Φ=90°, West), spending about 4 min in each direction during a cycle of period of about 16 min. The axis of the telescope was inclined at an angle of 32° with respect to the zenith. A pair of crossed flux gate magnetometers provided information every 8.2 sec on the azimuth of the telescope. The pulse heights from the X-ray detector were sorted into several channels extending from 10 to 120 keV. An Am241 source came into the field of view of the telescope once in 15 min for about 30 sec to provide in-flight calibration of the detector. The meridian transit of Sco X-1 was at 0454 hr UT. Just before the balloon reached the ceiling Sco X-1 was in the field of view of the telescope for 3 min and 41 sec. After the balloon reached ceiling, Sco X-1 was in the field of view of the telescope on five occasions between 0443 and 0553 hr UT. During the last observation, however, the balloon had lost altitude by about 1 g/cm2. The excess counts due to Sco X-1 were obtained by subtracting the counting rates corresponding to the North direction which did not include any known X-ray sources. The observation on Sco X-1 in the 1st cycle was made while the balloon was still ascending and consequently the interposed grammage was changing from 10.5 to 9.7 g/cm2. However, for the energy range under consideration, the change in the background counting rate was not significant and there cannot be any doubt regarding the genuineness of the excess counts recorded.

1968 ◽  
Vol 1 (4) ◽  
pp. 165-166
Author(s):  
R. M. Thomas

This paper presents observations of weak X-ray sources at photon energies between 20 and 100 keV which were made during a balloon flight conducted from Mildura, Australia on 29 February 1968. Results obtained from Sco XR-1 and the Sagittarius region during this flight have been presented elsewhere, and here we report additional results obtained during a search of an area of sky in which several sources have been reported from rocket experiments at photon energies below about 10 keV. The detector used was an actively collimated and shielded NaI(T1) crystal, 2 mm thick and 54.3 cm2 in area. Incident photons were sorted into 16 energy channels between 7 and 167 keV (1.76 to 0.07 Å). The collimator field of view was 8°FWHM; the telescope axis was fixed at a zenith angle of 32° and its azimuth angle was varied by rotating the observatory below the balloon. This allowed the telescope to scan back and forth in azimuth across a source, the azimuth angle at any time being indicated by magnetometers.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 15581-15589
Author(s):  
Atsushi Sato ◽  
Arisa Magi ◽  
Masanori Koshimizu ◽  
Yutaka Fujimoto ◽  
Shunji Kishimoto ◽  
...  

Bi-loaded PVK-based plastic scintillators doped with bis-MSB are applicable for high counting-rate measurement of high-energy X-rays. They showed a higher detection efficiency and light yield than EJ-256 under 67.41 keV X-ray irradiation.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Talgat Mamyrbayev ◽  
Katsumasa Ikematsu ◽  
Hidekazu Takano ◽  
Yanlin Wu ◽  
Kenji Kimura ◽  
...  

Owing to the development of X-ray focusing optics during the past decades, synchrotron-based X-ray microscopy techniques allow the study of specimens with unprecedented spatial resolution, down to 10 nm, using soft and medium X-ray photon energies, though at the expense of the field of view (FOV). One of the approaches to increase the FOV to square millimetres is raster-scanning of the specimen using a single nanoprobe; however, this results in a long data acquisition time. This work employs an array of inclined biconcave parabolic refractive multi-lenses (RMLs), fabricated by deep X-ray lithography and electroplating to generate a large number of long X-ray foci. Since the FOV is limited by the pattern height if a single RML is used by impinging X-rays parallel to the substrate, many RMLs at regular intervals in the orthogonal direction were fabricated by tilted exposure. By inclining the substrate correspondingly to the tilted exposure, 378000 X-ray line foci were generated with a length in the centimetre range and constant intervals in the sub-micrometre range. The capability of this new X-ray focusing device was first confirmed using ray-tracing simulations and then using synchrotron radiation at BL20B2 of SPring-8, Japan. Taking account of the fact that the refractive lens is effective for focusing high-energy X-rays, the experiment was performed with 35 keV X-rays. Next, by scanning a specimen through the line foci, this device was used to perform large FOV pixel super-resolution scanning transmission hard X-ray microscopy (PSR-STHXM) with a 780 ± 40 nm spatial resolution within an FOV of 1.64 cm × 1.64 cm (limited by the detector area) and a total scanning time of 4 min. Biomedical implant abutments fabricated via selective laser melting using Ti–6Al–4V medical alloy were measured by PSR-STHXM, suggesting its unique potential for studying extended and thick specimens. Although the super-resolution function was realized in one dimension in this study, it can be expanded to two dimensions by aligning a pair of presented devices orthogonally.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2004 ◽  
Vol 37 (6) ◽  
pp. 901-910 ◽  
Author(s):  
C. Seitz ◽  
M. Weisser ◽  
M. Gomm ◽  
R. Hock ◽  
A. Magerl

A triple-axis diffractometer for high-energy X-ray diffraction is described. A 450 kV/4.5 kW stationary tungsten X-ray tube serves as the X-ray source. Normally, 220 reflections of thermally annealed Czochralski Si are employed for the monochromator and analyser. Their integrated reflectivity is about ten times higher than the ideal crystal value. With the same material as the sample, and working with the WKα line at 60 keV in symmetric Laue geometry for all axes, the full width at half-maximum (FWHM) values for the longitudinal and transversal resolution are 2.5 × 10−3and 1.1 × 10−4for ΔQ/Q, respectively, and the peak intensity for a non-dispersive setting is 3000 counts s−1. In particular, for a double-axis mode, an energy well above 100 keV from theBremsstrahlungspectrum can be used readily. High-energy X-rays are distinguished by a high penetration power and materials of several centimetre thickness can be analysed. The feasibility of performing experiments with massive sample environments is demonstrated.


2020 ◽  
Vol 499 (2) ◽  
pp. 3006-3018
Author(s):  
Bangzheng Sun ◽  
Marina Orio ◽  
Andrej Dobrotka ◽  
Gerardo Juan Manuel Luna ◽  
Sergey Shugarov ◽  
...  

ABSTRACT We present X-ray observations of novae V2491 Cyg and KT Eri about 9 yr post-outburst of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM–Newton, KT Eri also with the Chandra ACIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $\dot{m}=1.4\times 10^{-9}{\!-\!}10^{-8}\,{\rm M}_\odot \,{\rm yr}^{-1}$, while for KT Eri, $\dot{m}\lt 2\times 10^{-10}{\rm M}_\odot \,{\rm yr}$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of  39 min, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $\dot{m}\sim 1.8\times 10^{-11}{\rm M}_\odot \,{\rm yr}^{-1}$, one magnitude lower than KT Eri, consistently with its U Gem outburst behaviour and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the system’s low inclination, probably due to the X-ray flux of the secondary. A period of  81 min is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1258-1259 ◽  
Author(s):  
H. Takahashi ◽  
N. Handa ◽  
T. Murano ◽  
M. Terauchi ◽  
M. Koike ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


1974 ◽  
Vol 57 ◽  
pp. 421-422 ◽  
Author(s):  
Kenneth J. Frost

An instrument aboard the Fifth Orbiting Solar Observatory has observed hard solar X-rays from January 1969 to May 1972. A large number of X-ray bursts generated by solar cosmic ray flares have been observed. The X-ray bursts consist, in general, of two non-thermal components. The earliest occurring non-thermal component, coincident with the explosive phase, consists of a group of one to about ten X-ray bursts that are, for each burst, approximately 10 s duration and symmetrical in rise and decay. The time structure and multiplicity of these bursts is remarkably similar to that found in type III radio bursts in the meterwave band. The spectra of these bursts steepens sharply at energies greater than 100 keV indicating a limit at this energy for electron acceleration during the explosive or flash phase of the flare. For several flares these multiple X-ray bursts have occurred in coincidence with a group of type III bursts.


Sign in / Sign up

Export Citation Format

Share Document