scholarly journals Evolution of massive stars, supergiants and Wolf-Rayet stars

1984 ◽  
Vol 105 ◽  
pp. 299-319
Author(s):  
André Maeder

Massive stars (say M ≳ 9 M⊙) play a major role in Astrophysics. They are the main agents of nucleosynthesis and galactic enrichment and present many interesting properties, like high stellar winds, chemical surface enhancements, instabilities etc. which deserve further investigation. Furthermore, massive stars also are the powering sources of giant H II regions and have important radiative, mechanical and chemical interactions with the interstellar medium.

1999 ◽  
Vol 193 ◽  
pp. 636-644
Author(s):  
Elias Brinks ◽  
Fabian Walter

Neutral hydrogen (H I) is a magnificent tool when studying the structure of the interstellar medium (ISM) as it is relatively easily observable and can be mapped at good spatial and velocity resolution with modern instruments. Moreover, it traces the cool (∼ 100 K) and warm (∼ 5000 K) neutral gas which together make up about 60%, or the bulk, of the ISM. The currently accepted picture is that stellar winds and subsequent supernovae are the origin for the clearly defined holes or bubbles within the more or less smooth neutral medium. The H I can therefore serve indirectly as a tracer of the hot interstellar medium (HIM) left behind after the most massive stars within an OB association have gone off as supernovae. A splendid example is the dwarf galaxy IC 2574 for which we discuss H I, optical and X-ray observations.


1991 ◽  
Vol 148 ◽  
pp. 139-144 ◽  
Author(s):  
Robert C. Kennicutt

The H II regions in the Magellanic Clouds provide an opportunity to characterize the global star formation properties of a galaxy at close range. They also provide a unique laboratory for testing empirical tracers of the massive star formation rates and initial mass functions in more distant galaxies, and for studying the dynamical interactions between massive stars and the interstellar medium. This paper discusses several current studies in these areas.


2020 ◽  
Vol 639 ◽  
pp. A2 ◽  
Author(s):  
C. H. M. Pabst ◽  
J. R. Goicoechea ◽  
D. Teyssier ◽  
O. Berné ◽  
R. D. Higgins ◽  
...  

Context. The Orion Molecular Cloud is the nearest massive-star forming region. Massive stars have profound effects on their environment due to their strong radiation fields and stellar winds. Stellar feedback is one of the most crucial cosmological parameters that determine the properties and evolution of the interstellar medium in galaxies. Aims. We aim to understand the role that feedback by stellar winds and radiation play in the evolution of the interstellar medium. Velocity-resolved observations of the [C II] 158 μm fine-structure line allow us to study the kinematics of UV-illuminated gas. Here, we present a square-degree-sized map of [C II] emission from the Orion Nebula complex at a spatial resolution of 16′′ and high spectral resolution of 0.2 km s−1, covering the entire Orion Nebula (M 42) plus M 43 and the nebulae NGC 1973, 1975, and 1977 to the north. We compare the stellar characteristics of these three regions with the kinematics of the expanding bubbles surrounding them. Methods. We use [C II] 158 μm line observations over an area of 1.2 deg2 in the Orion Nebula complex obtained by the upGREAT instrument onboard SOFIA. Results. The bubble blown by the O7V star θ1 Ori C in the Orion Nebula expands rapidly, at 13 km s−1. Simple analytical models reproduce the characteristics of the hot interior gas and the neutral shell of this wind-blown bubble and give us an estimate of the expansion time of 0.2 Myr. M 43 with the B0.5V star NU Ori also exhibits an expanding bubble structure, with an expansion velocity of 6 km s−1. Comparison with analytical models for the pressure-driven expansion of H II regions gives an age estimate of 0.02 Myr. The bubble surrounding NGC 1973, 1975, and 1977 with the central B1V star 42 Orionis expands at 1.5 km s−1, likely due to the over-pressurized ionized gas as in the case of M 43. We derive an age of 0.4 Myr for this structure. Conclusions. We conclude that the bubble of the Orion Nebula is driven by the mechanical energy input by the strong stellar wind from θ1 Ori C, while the bubbles associated with M 43 and NGC 1977 are caused by the thermal expansion of the gas ionized by their central later-type massive stars.


1999 ◽  
Vol 193 ◽  
pp. 627-635
Author(s):  
M. Sally Oey

On scales ranging from pcs to kpcs, the relationship between stellar and gaseous galactic components forms the basis for interpreting observations of galaxies and understanding galaxy formation and evolution. Feedback effects from massive stars dominate the structure, ionization, kinematics, and enrichment of the gaseous ISM in star-forming galaxies. On galactic scales, the ionizing radiation from these stars creates populations of H II regions and the diffuse, warm ionized medium. Likewise, superbubbles created by stellar winds and supernovae strongly influence the structure, kinematics, and balance of the multiphase ISM. This contribution reviews these feedback effects of massive stars on the global ISM.


1987 ◽  
Vol 115 ◽  
pp. 198-200 ◽  
Author(s):  
T. Montmerle ◽  
H. Dorland ◽  
C. Doom

H II regions around OB associations have a thick-shell structure (see, e.g., the Carina and Rosette nebulae), and yet the standard “Hot Interstellar Bubble” model (e.g., Weaver et al. 1977) predicts thin H II shells around a large X-ray emitting volume, when associated with stellar winds. Observations suggest that strong dissipation must occur at the edge of the wind cavity: (i) expansion velocities there are much smaller than predicted by the standard model (e.g., Chu, 1983); (ii) in bubbles around WR stars, overabundances of N, He, etc., are seen, hence the need to cool these WR-produced elements down to observable temperatures (Kwitter, 1981). Also, two theoretical developments are important: (i) new stellar evolution models for massive stars, including mass loss and overshooting in convective cores (e.g., Doom, 1985); (ii) a non-linear theory for heat conduction with steep temperature gradients (Luciani et al. 1985).


2003 ◽  
Vol 212 ◽  
pp. 700-701
Author(s):  
Silvina Cichowolski ◽  
E. Marcelo Arnal ◽  
Cristina E. Cappa ◽  
Sergey Pineault ◽  
Nicole St-Louis

The structure and dynamics of the interstellar medium (ISM) are strongly affected by the action of massive stars. They deposit in the ISM a huge number of ionizing photons and transfer to it vast amounts of mechanical energy via their powerful stellar winds. As a consequence, massive stars create what is known as an interstellar bubble, i.e., a minimum in the gas distribution characterized by a low volume density and a high temperature, surrounded by an expanding envelope (Weaver et al. 1977). The star should be seen projected onto, or close to, the centre of the H i minimum.


2014 ◽  
Vol 1 ◽  
pp. 61-63 ◽  
Author(s):  
J. Mackey ◽  
N. Langer ◽  
S. Mohamed ◽  
V. V. Gvaramadze ◽  
H. R. Neilson ◽  
...  

Abstract. We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.


1999 ◽  
Vol 16 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Fabian Walter

AbstractHigh resolution HI observations of nearby dwarf galaxies (most of which are situated in the M81 group at a distance of about 3·2 Mpc) reveal that their neutral interstellar medium (ISM) is dominated by hole-like features most of which are expanding. A comparison of the physical properties of these holes with the ones found in more massive spiral galaxies (such as M31 and M33) shows that they tend to reach much larger sizes in dwarf galaxies. This can be understood in terms of the galaxy's gravitational potential. The origin of these features is still a matter of debate. In general, young star forming regions (OB-associations) are held responsible for their formation. This picture, however, is not without its critics and other mechanisms such as the infall of high velocity clouds, turbulent motions or even gamma ray bursters have been recently proposed. Here I will present one example of a supergiant shell in IC 2574 which corroborates the picture that OB associations are indeed creating these structures. This particular supergiant shell is currently the most promising case to study the effects of the combined effects of stellar winds and supernova explosions which shape the neutral interstellar medium of (dwarf) galaxies.


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


2015 ◽  
Vol 12 (S316) ◽  
pp. 294-301
Author(s):  
Richard Wünsch ◽  
Jan Palouš ◽  
Guillermo Tenorio-Tagle ◽  
Casiana Muñoz-Tuñón ◽  
Soňa Ehlerová

AbstractMassive stars in young massive clusters insert tremendous amounts of mass and energy into their surroundings in the form of stellar winds and supernova ejecta. Mutual shock-shock collisions lead to formation of hot gas, filling the volume of the cluster. The pressure of this gas then drives a powerful cluster wind. However, it has been shown that if the cluster is massive and dense enough, it can evolve in the so–called bimodal regime, in which the hot gas inside the cluster becomes thermally unstable and forms dense clumps which are trapped inside the cluster by its gravity. We will review works on the bimodal regime and discuss the implications for the formation of subsequent stellar generations. The mass accumulates inside the cluster and as soon as a high enough column density is reached, the interior of the clumps becomes self-shielded against the ionising radiation of stars and the clumps collapse and form new stars. The second stellar generation will be enriched by products of stellar evolution from the first generation, and will be concentrated near the cluster center.


Sign in / Sign up

Export Citation Format

Share Document