scholarly journals The Local Low-Mass Binary Pulsar Population

1996 ◽  
Vol 165 ◽  
pp. 235-241
Author(s):  
D.R. Lorimer

Using a fully self-consistent approach to account for known survey selection effects, we constrain the number and scale height of low-mass binary pulsars (LMBPs) in the local solar neighbourhood. Our results show that the local surface density of LMBPs with luminosities above 2.5 mJy kpc2 is ∼20 kpc−2. Assuming that these are long-lived (≲1010 yr) objects, their local birth rate is at least 2 10−9 kpc−2 yr−1. Whilst this is in excellent agreement with the birth rate of their proposed progenitors, the low-mass X-ray binaries, there are several uncertainties involved which could significantly increase our derived birth rate, perhaps by an order of magnitude. Models in which the scale height of LMBPs above the galactic plane exceeds 500 pc are found to be most consistent with the data. The mean space velocity at birth required to produce scale heights of this order in 1010 yr is found to be ≳ 80 km s−1.

1998 ◽  
Vol 188 ◽  
pp. 111-111
Author(s):  
Walter H.G. Lewin

The bursts from GRO J1744-28 are due to accretion instabilities as is the case for type II bursts in the Rapid Burster. Both sources are transient Low-Mass X-ray Binaries, and they both exhibit unusual quasi-periodic-oscillations in their persistent X-ray flux following several (not all) of the type II bursts. There are important differences too. GRO J1744-28 is an X-ray pulsar; the Rapid Burster is not. In addition, the pattern of bursts and the burst peak luminosities are very different for the two sources. Time intervals between the rapidly repetitive bursts in the Rapid Burster can be as short as 10 sec, in 1744-28 they are as short as 200 sec. The peak luminosities of the bursts from GRO J1744-28 can exceed the Eddington luminosity (for assumed isotropic emission) by one to two orders of magnitude. The QPO centroid frequencies (see above) differ by an order of magnitude (~0.04 Hz for the Rapid Burster, and 0.3 Hz for GRO J1744-28). The difference in behavior p obably lies in the difference in the magnetic dipole field strength of the accreting neutron stars (for GRO J1744-28 it is almost certainly much higher than for the Rapid Burster). It remains puzzling, why GRO J1744-28 and the Rapid Burster are the only known sources which exhibit rapidly repetitive type II bursts.


1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


2006 ◽  
Vol 2 (S238) ◽  
pp. 43-48
Author(s):  
Jonay I. González Hernández ◽  
Rafael Rebolo ◽  
Garik Israelian

AbstractLow mass X-ray binaries (LMXBs) offer us an unique opportunity to study the formation processes of compact objects. Secondary stars orbiting around either a black hole or a neutron star could have captured a significant amount of the ejected matter in the supernova explosions that most likely originated the compact objects. The detailed chemical analysis of these companions can provide valuable information on the parameters involved in the supernova explosion such us the mass cut, the amount of fall-back matter, possible mixing processes, and the energy and the symmetry of the explosion. In addition, this analysis can help us to find out the birth place of the binary system. We have measured element abundances of secondary stars in the LMXBs A0620–00, Cen X-4, XTE J1118+480 and Nova Sco 94. We find solar or above solar metalicity for all these systems, what appears to be independent on their locations with respect to the Galactic plane. A comparison of the observed abundances with yields from different supernova explosion together with the kinematic properties of these systems suggest a supernova origin for the compact objects in all of them except for A0620–00, for which a direct collapse cannot be discarded.


2019 ◽  
Vol 492 (2) ◽  
pp. 2858-2871 ◽  
Author(s):  
N V Gusinskaia ◽  
J W T Hessels ◽  
N Degenaar ◽  
A T Deller ◽  
J C A Miller-Jones ◽  
...  

ABSTRACT Aql X-1 is one of the best-studied neutron star low-mass X-ray binaries. It was previously targeted using quasi-simultaneous radio and X-ray observations during at least seven different accretion outbursts. Such observations allow us to probe the interplay between accretion inflow (X-ray) and jet outflow (radio). Thus far, these combined observations have only covered one order of magnitude in radio and X-ray luminosity range; this means that any potential radio–X-ray luminosity correlation, LR ∝ LXβ, is not well constrained (β ≈ 0.4–0.9, based on various studies) or understood. Here we present quasi-simultaneous Very Large Array and Swift-XRT observations of Aql X-1’s 2016 outburst, with which we probe one order of magnitude fainter in radio and X-ray luminosity compared to previous studies (6 × 1034 erg s−1 < LX <3 × 1035 erg s−1, i.e. the intermediate to low-luminosity regime between outburst peak and quiescence). The resulting radio non-detections indicate that Aql X-1’s radio emission decays more rapidly at low X-ray luminosities than previously assumed – at least during the 2016 outburst. Assuming similar behaviour between outbursts, and combining all available data in the hard X-ray state, this can be modelled as a steep β =$1.17^{+0.30}_{-0.21}$ power-law index or as a sharp radio cut-off at LX ≲ 5 × 1035 erg s−1 (given our deep radio upper limits at X-ray luminosities below this value). We discuss these results in the context of other similar studies.


2018 ◽  
Vol 479 (3) ◽  
pp. 3634-3650 ◽  
Author(s):  
Alessio Marino ◽  
N Degenaar ◽  
T Di Salvo ◽  
R Wijnands ◽  
L Burderi ◽  
...  

2020 ◽  
Vol 633 ◽  
pp. A45 ◽  
Author(s):  
Long Jiang ◽  
Na Wang ◽  
Wen-Cong Chen ◽  
Xiang-Dong Li ◽  
Wei-Min Liu ◽  
...  

According to the recycling model, neutron stars in low-mass X-ray binaries were spun up to millisecond pulsars (MSPs), which indicates that all MSPs in the Galactic plane ought to be harbored in binaries. However, about 20% Galactic field MSPs are found to be solitary. To interpret this problem, we assume that the accreting neutron star in binaries may collapse and become a strange star when it reaches some critical mass limit. Mass loss and a weak kick induced by asymmetric collapse during the phase transition (PT) from neutron star to strange star can result in isolated MSPs. In this work, we use a population-synthesis code to examine the PT model. The simulated results show that a kick velocity of ∼60 km s−1 can produce ∼6 × 103 isolated MSPs and birth rate of ∼6.6 × 10−7 yr−1 in the Galaxy, which is approximately in agreement with predictions from observations. For the purpose of comparisons with future observation, we also give the mass distributions of radio and X-ray binary MSPs, along with the delay time distribution.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


Author(s):  
Nicolas Scepi ◽  
Mitchell C Begelman ◽  
Jason Dexter

Abstract Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) are compact binaries showing variability on time scales from years to less than seconds. Here, we focus on explaining part of the rapid fluctuations in DNe, following the framework of recent studies on the monthly eruptions of DNe that use a hybrid disk composed of an outer standard disk and an inner magnetized disk. We show that the ionization instability, that is responsible for the monthly eruptions of DNe, is also able to operate in the inner magnetized disk. Given the low density and the fast accretion time scale of the inner magnetized disk, the ionization instability generates small, rapid heating and cooling fronts propagating back and forth in the inner disk. This leads to quasi-periodic oscillations (QPOs) with a period of the order of 1000 s. A strong prediction of our model is that these QPOs can only develop in quiescence or at the beginning/end of an outburst. We propose that these rapid fluctuations might explain a subclass of already observed QPOs in DNe as well as a, still to observe, subclass of QPOs in LMXBs. We also extrapolate to the possibility that the radiation pressure instability might be related to Type B QPOs in LMXBs.


2021 ◽  
Vol 502 (2) ◽  
pp. 1856-1863
Author(s):  
G C Mancuso ◽  
D Altamirano ◽  
M Méndez ◽  
M Lyu ◽  
J A Combi

ABSTRACT We detect millihertz quasi-periodic oscillations (mHz QPOs) using the Rossi X-ray Time Explorer (RXTE) from the atoll neutron-star (NS) low-mass X-ray binaries 4U 1608–52 and Aql X–1. From the analysis of all RXTE observations of 4U 1608–52 and Aql X–1, we find mHz QPOs with a significance level >3σ in 49 and 47 observations, respectively. The QPO frequency is constrained between ∼4.2 and 13.4 mHz. These types of mHz QPOs have been interpreted as being the result of marginally stable nuclear burning of He on the NS surface. We also report the discovery of a downward frequency drift in three observations of 4U 1608–52, making it the third source that shows this behaviour. We only find strong evidence of frequency drift in one occasion in Aql X–1, probably because the observations were too short to measure a significant drift. Finally, the mHz QPOs are mainly detected when both sources are in the soft or intermediate states; the cases that show frequency drift only occur when the sources are in intermediate states. Our results are consistent with the phenomenology observed for the NS systems 4U 1636–53 and EXO 0748–676, suggesting that all four sources can reach the conditions for marginally stable burning of He on the NS surface. These conditions depend on the source state in the same manner in all four systems.


Sign in / Sign up

Export Citation Format

Share Document