scholarly journals Shock Chemistry in Bipolar Molecular Outflows

1997 ◽  
Vol 182 ◽  
pp. 153-162 ◽  
Author(s):  
R. Bachiller ◽  
M. Pérez Gutiérrez

Chemical studies have a great potential to study the structure and evolution of the bipolar molecular outflows driven by young stellar objects. In this paper, we discuss some very recent mm-wave studies of L 1157, a bipolar molecular outflow driven by a Class 0 protostar. These observations are very useful to illustrate the chemical alterations produced by a violent highly-collimated outflow. Different molecular lines are observed to trace different components of the gas. Some molecules are abundant in the quiescent medium but are not observed in the shock (e.g. C3H2, N2H+, H13CO+, DCO+), whereas some otherwise rare molecules are very enhanced at the shocked region (e.g. SiO, CH3OH, H2CO, HCN, CN, SO, SO2). In addition, we have observed strong gradients in the chemical composition across the outflow blue lobe. We briefly discuss the chemistry of the most important molecules, devoting special attention to the species which are thought to be abundant in interstellar ice mantles.

Author(s):  
Chris J R Lynch ◽  
Michael D Smith ◽  
Simon C O Glover

Abstract Jets from young stellar objects provide insight into the workings of the beating heart at the centre of star forming cores. In some cases, multiple pulsed outflows are detected such as the atomic and molecular jets from a proposed binary system in the T Tauri star HH 30. We investigate here the development and propagation of duelling atomic and molecular outflows stemming from the two stars in co-orbit. We perform a series of numerical experiments with the ZEUS-MP code with enhanced cooling and chemistry modules. The aim of this work is to identify signatures on scales of order 100 AU. The jet sources are off the grid domain and so it is the propagation and interaction from ∼ 20 AU out to 100 AU simulated here. We find that the molecular flow from the orbiting source significantly disturbs the atomic jet, deflecting and twisting the jet and disrupting the jet knots. Regions of high ionisation are generated as the atomic jet rams through the dense molecular outflow. Synthetic images in atomic and molecular lines are presented which demonstrate identifying signatures. In particular, the structure within the atomic jet is lost and Hα may trace the walls of the present CO cavity or where the walls have been recently. These results provide a framework for the interpretation of upcoming high resolution observations.


2006 ◽  
Vol 2 (S237) ◽  
pp. 475-475
Author(s):  
Yoshito Shimajiri ◽  
S. Takahashi ◽  
S. Takakuwa ◽  
M. Saito ◽  
R. Kawabe

AbstractSince most stars are born as members of clusters (Lada & Lada 2003), it is important to clarified the detailed mechanism of cluster formation for comprehensive understanding of star formation. However, our current understanding of cluster formation is limited due to the followings; (a)Cluster forming regions are located at the far distance.(b)There are complex mixtures of outflows and dense gas in cluster forming regions. So, we focused on the Orion Molecular Cloud 2 region (OMC-2), a famous cluster-forming region (Lada & Lada 2003) and the most nearest GMC. We observed the FIR 4 region with the Nobeyama Millimeter Array(NMA), Atacama Submillimeter Telescope Experiment (ASTE). In this region, there are 3 protostars (FIR3, FIR4, FIR5) which were identified as 1.3 mm dust continuum sources (Chini et al. 1997) and driving sources of mixed outflows, and FIR 4 is the most strongest source of 1.3 mm dust continuum in OMC-2. Molecular lines we adopted are a high density (105cm−3) gas tracer of H13CO+ (J=1-0), a molecular outflow tracer of 12CO(J=1-0) and 12CO(J=3-2), and SiO(J=2-1 v=0) as a tracer of shocks associated with an interaction between outflows and dense gas.From results of the 12CO(J=1-0) outflow, H13CO+ dense gas, and the SiO shock, the outflow from FIR 3 interacts with dense gas in the FIR 4 region. Moreover the Position-Velocity diagram along the major axis of the 12CO(J=3-2) outflow shows that the 12CO(J=1-0) and SiO emission exhibits a L shape (the line widths increase in the interacting region in morphology). This is an evidence of interaction between the outflows and dense gas (Takakuwa et al. 2003). From result of the 3 mm dust continuum, the interacted region by the molecular outflow of FIR 3 is an assemble of seven dense cores. The mass of each core is 0.1-0.8 M. This clumpy structure is evident only at FIR 4 in the entire OMC-2/3 region. There are possible that two cores are in the proto-stellar phase, because 3 mm dust continuum source correspond to NIR source or 3.6 cm f-f jet source. From these results, cores in the FIR 4 region may be potential source of the next-generation stars. In the other words, there is a possibility that the molecular outflow ejected from FIR 3 is triggering the cluster formation in the FIR 4 region.


1993 ◽  
Vol 10 (3) ◽  
pp. 247-249 ◽  
Author(s):  
C.M. Wright ◽  
D.K. Aitken ◽  
C.H. Smith ◽  
P.F. Roche

AbstractThe star-formation process is an outstanding and largely unsolved problem in astrophysics. The role of magnetic fields is unclear but is widely considered to be important at all stages of protostellar evolution, from cloud collapse to ZAMS. For example, in some hydromagnetic models, the field may assist in removing angular momentum, thereby driving accretion and perhaps bipolar outflows.Spectropolarimetry between 8 and 13μm provides information on the direction of the transverse component of a magnetic field through the alignment of dust grains. We present results of 8–13μm spectropolarimetric observations of a number of bipolar molecular outflow sources, and compare the field directions observed with the axes of the outflows and putative disk-like structures observed to be associated with some of the objects. There is a strong correlation, though so far with limited statistics, between the magnetic field and disk orientations. We compare our results with magnetic field configurations predicted by current models for hydromagnetically driven winds from the disks around Young Stellar Objects (YSOs). Our results appear to argue against the Pudritz and Norman model and instead seem to support the Uchida and Shibata model.


1987 ◽  
Vol 115 ◽  
pp. 255-273
Author(s):  
Stephen E. Strom ◽  
Karen M. Strom

The fundamental properties of optical and molecular outflows associated with young stellar objects are reviewed. Particular emphasis is placed on a discussion of new results concerning outflow energetics, collimating structures and the relationship between outflow properties and the magnetic field geometry characterizing their host molecular clouds. IRAS observations of YSO mass outflows reveal extended far-IR emission associated with high velocity molecular gas; in the case of L1551 IRS5, the luminosity of the extended emission is ∼10 times the mechanical luminosity inferred from observation of the molecular flow (and thus ≳0.1 the bolometric luminosity of the YSO driving the outflow). Circumstellar disks of size ∼100 au appear to be a common, if not certain outcome of the stellar birth process for stars of ∼1M⊙. In a few cases, it has been possible to resolve disk-like structures associated with YSO outflow sources. In such cases, the disk axes appear to lie along the direction of molecular outflows or stellar jets. The mass outflows (and by inference, the axes of circumstellar disks) show a remarkable tendency to align along the direction of the magnetic fields which thread their host molecular clouds. This suggests that the cloud magnetic field must play an important role in determining the flattening (and perhaps the rotation) of protostellar structures.


1998 ◽  
Vol 502 (1) ◽  
pp. 315-336 ◽  
Author(s):  
Michiel R. Hogerheijde ◽  
Ewine F. van Dishoeck ◽  
Geoffrey A. Blake ◽  
Huib Jan van Langevelde

2019 ◽  
Vol 492 (1) ◽  
pp. 294-314 ◽  
Author(s):  
Zhen Guo (郭震) ◽  
P W Lucas ◽  
C Contreras Peña ◽  
R G Kurtev ◽  
L C Smith ◽  
...  

ABSTRACT Numerous eruptive variable young stellar objects (YSOs), mostly Class I systems, were recently detected by the near-infrared Vista Variables in the Via Lactea (VVV) survey. We present an exploratory near-infrared spectroscopic variability study of 14 eruptive YSOs. The variations were sampled over one-day and one-to-two-year intervals and analysed in combination with VVV light curves. CO overtone absorption features are observed on three objects with FUor-like spectra: all show deeper absorption when they are brighter. This implies stronger emission from the circumstellar disc with a steeper vertical temperature gradient when the accretion rate is higher. This confirms the nature of fast VVV FUor-like events, in line with the accepted picture for classical FUors. The absence of Brγ emission in a FUor-like object declining to pre-outburst brightness suggests that reconstruction of the stellar magnetic field is a slow process. Within the one-day time-scale, 60 per cent of H2-emitting YSOs show significant but modest variation, and 2/6 sources have large variations in Brγ. Over year-long time-scales, H2 flux variations remain modest despite up to 1.8 mag variation in Ks. This indicates that emission from the molecular outflow usually arises further from the protostar and is unaffected by relatively large changes in accretion rate on year-long time-scales. Two objects show signs of on/off magnetospheric accretion traced by Brγ emission. In addition, a 60 per cent inter-night brightening of the H2 outflow is detected in one YSO.


2009 ◽  
Vol 499 (3) ◽  
pp. 811-825 ◽  
Author(s):  
A. López-Sepulcre ◽  
C. Codella ◽  
R. Cesaroni ◽  
N. Marcelino ◽  
C. M. Walmsley

1987 ◽  
Vol 122 ◽  
pp. 87-88
Author(s):  
G. Silvestro ◽  
M. Robberto

High velocity molecular outflows with bipolar morphology are detected in association with young stellar objects within dense interstellar clouds. Recent observations suggest that the flow could be “confined to a relatively thin, swept-up shell surrounding an evacuated wind cavity” (1). A shell structure characteristic of the wind-cloud interaction had been predicted in earlier theoretical works (see for instance (2)). More recently, models with different (not shell-shaped) geometries were presented, e.g. (3).


2013 ◽  
Vol 9 (S297) ◽  
pp. 359-363
Author(s):  
H. Linnartz

AbstractThe diffuse interstellar bands are not due to solid state species. However, under the explicit assumption that DIB carriers survive the transfer from translucent to dark clouds, it is expected that for the low temperatures in the dense interstellar medium also DIB carriers accrete onto dust grains. Like all other molecules, apart from molecular hydrogen, they will get embedded in an ice matrix that largely consists of amorphous solid water. This offers - in principle - a tool to search for DIBs in complete different environments, both in space (i.e., towards embedded young stellar objects) and in the laboratory, namely in the solid state simulating interstellar ice analogues. Currently experiments are ongoing in the Sackler Laboratory for Astrophysics at Leiden Observatory to record optical ice spectra of potential DIB carriers. For this a new experimental approach has been developed. Its performance and potential are discussed.


Sign in / Sign up

Export Citation Format

Share Document