scholarly journals Star Formation in Normal Irregular Galaxies

1987 ◽  
Vol 115 ◽  
pp. 611-612
Author(s):  
Deidre A. Hunter

Normal, non-interacting irregular galaxies can be quite successful at forming stars. Therefore, spiral density waves are not necessary to a vigorous production of stars. Nevertheless, there is a large range in star-formation rates among irregular galaxies. Irregulars with common characteristics can have different overall levels of star-formation activity, so that the level of activity does not seem to be simple related to observable global properties of galaxian systems. The constant star formation rates of most normal irregulars also imply the existence of regulatory processes.

1983 ◽  
Vol 100 ◽  
pp. 141-142 ◽  
Author(s):  
J. V. Feitzinger ◽  
P. E. Seiden

Spiral structure in galaxies can arise from both dynamic and non dynamic phenomena: spiral density waves and stochastic selfpropagating star formation. The relative importance of these effects is still not known. Deficiences of the original selfpropagating star formation model (where only stars are taken into account) are overcome by explicitly considering the stars embedded in and interacting with a two-component gas (Seiden and Gerola, 1979; Seiden, Schulman and Feitzinger, 1982; Seiden and Gerola, 1982). The two-component gas is essential because it is the means by which we get feedback in the interaction between stars and gas. The coupling between stars and gas regulates and stabilizes star formation in a galaxy. Under proper conditions this model can give good grand design spirals (Fig. 1).


1991 ◽  
Vol 148 ◽  
pp. 343-344
Author(s):  
L. Greggio ◽  
G. Marconi ◽  
P. Focardi ◽  
M. Tosi

The process of star formation (SF) and the modalities with which it occurs in galaxies of different sizes are still poorly understood. On the other hand, interpretation of the chemical and photometric properties of galaxies requires the adoption of adequate laws for the SF rate and Initial Mass Function (IMF) in model computations. Dwarf irregular galaxies in the Local Group offer the chance to study their SF history through analysis of their HR diagrams, which can be derived down to V 25, corresponding to MV0, i.e. to main sequence stars of 2 M⊙. Therefore, for these galaxies, we can derive information on the star formation activity which has occurred over the last 1 Gyr approximately. In this framework, we have undertaken CCD observations of Dwarf irregular galaxies in the Local Group with ESO telescopes and briefly present here the results obtained for DDO 210, Sextans B and NGC 3109.


2008 ◽  
Vol 4 (S251) ◽  
pp. 47-48 ◽  
Author(s):  
C. Knez ◽  
M. Moore ◽  
S. Travis ◽  
R. Ferrante ◽  
J. Chiar ◽  
...  

AbstractWe present 5–20 μm Spitzer/IRS spectroscopy toward stars behind dark molecular clouds. We present preliminary results from the Serpens dark cloud to show the variation between environments within a cloud. We are surveying 3 clouds with varying levels of star formation activity. Serpens has the highest level of activity from our 3 clouds. We show that location as well extinction can cause variations in ice composition. We also find that some lines of sight contain organic molecules such as methane and methanol, and the first detection of acetylene ice in the interstellar medium. We believe the high extinction lines of sight have been enriched by star formation activity near those lines of sight.


1986 ◽  
Vol 116 ◽  
pp. 439-449 ◽  
Author(s):  
John G. Hoessel

Observing luminosity functions and color-magnitude diagrams is a first step towards understanding the luminous stellar populations in galaxies. Dwarf irregular galaxies are of special interest for a variety of reasons. They are common at distances where they can be resolved, and generally have low background surface brightnesses which makes photometry of the resolved stars relatively easy. Dwarf irregulars exhibit a fairly wide spread in metal abundance allowing the study of massive star formation and evolution under a variety of conditions. Also, the dynamics of such systems is in general simple, without spiral density waves or other effects which might complicate understanding of the star formation process.


Author(s):  
A. G. Karapetyan ◽  
A. A. Hakobyan ◽  
L. V. Barkhudaryan ◽  
G. A. Mamon ◽  
D. Kunth ◽  
...  

We present an analysis of the impact of spiral density waves (DWs) on the radial and surface density distributions of core-collapse (CC) supernovae (SNe) in host galaxies with different arm classes. For the first time, we show that the corotation radius normalized surface density distribution of CC SNe (tracers of massive star formation) indicates a dip at corotation in long-armed grand-design (LGD) galaxies. The high SNe surface density just inside and outside corotation may be the sign of triggered massive star formation by the DWs. Our results may support the large-scale shock scenario induced by spiral DWs in LGD galaxies, which predicts a higher star formation efficiency around the shock fronts, avoiding the corotation region.


1999 ◽  
Vol 193 ◽  
pp. 679-691
Author(s):  
Francesca Matteucci ◽  
Annibale D'Ercole

We will review the most popular models for the chemical evolution of some starburst galaxies, in particular dwarf irregular galaxies. These galaxies are relatively simple and unevolved objects with low metallicities and large gas contents, suggesting that they are either young or have undergone discontinuous star formation activity. Some dwarf irregulars are starburst galaxies currently experiencing an intense star formation event and they are known as blue compact galaxies or extragalactic H II regions. We will discuss the effects of the presence of dark matter halos together with stellar energetics (stellar winds and supernovae) on the development of a galactic wind in these systems. Particular emphasis will be given to the role of massive stars in driving the thermal and chemical evolution of the gas, in particular to type II supernovae. A comparison between different model predictions for abundances and abundance ratios will be used to impose constraints on the star formation history and on the amount of dark matter, which we found to be extremely important in these systems.


1996 ◽  
Vol 171 ◽  
pp. 443-443
Author(s):  
R.E. Schulte-Ladbeck ◽  
Ulrich Hopp

We recently completed two-color CCD photometry of resolved stars in 11 dwarf irregular galaxies (Hopp & Schulte-Ladbeck, 1995, A&AS 111, 527), selected because of their relative isolation from massive galaxies in the Kran-Korteweg – Tammann sample (1979, AN 300, 181). The B-R color magnitude diagrams (CMD) show that all galaxies studied had star formation activity in the last ∼ 108 yr. Several of them continue to form stars, the most active being UGC 5272 A (see Hopp & Schulte-Ladbeck, 1991, A&A 248, 1) while others, like DDO 210 (Hopp & Schulte-Ladbeck, 1994, ESO Conf. Workshop Proc. 49, 511), are pausing in their star formation activity. The CMDs enable us to select the brightest blue supergiants in these galaxies and to estimate their distances, D. Our values agree with the estimates based on the Virgo inflow model of Kran-Korteweg (1986, A&AS 66, 255) at the 30%-level. Prelimanary values are given in the table below.


2020 ◽  
Vol 15 (S359) ◽  
pp. 33-34
Author(s):  
K. A. Cutiva-Alvarez ◽  
R. Coziol ◽  
J. P. Torres-Papaqui ◽  
H. Andernach ◽  
A. C. Robleto-Orús

AbstractUsing WISE data, we calibrated the W2-W3 colors in terms of star formation rates (SFRs) and applied this calibration to a sample of 1285 QSOs with the highest flux quality, covering a range in redshift from z ˜ 0.3 to z ˜ 3.8. According to our calibration, the SFR increases continuously, reaching a value at z ˜ 3.8 about 3 times higher on average than at lower redshift. This increase in SFR is accompanied by an increase of the BH mass by a factor 100 and a gradual increase of the mean Eddington ratio from 0.1 to 0.3 up to z ˜ 1.5 – 2.0, above which the ratio stays constant, despite a significant increase in BH mass. Therefore, QSOs at high redshifts have both more active BHs and higher levels of star formation activity.


2021 ◽  
Vol 503 (3) ◽  
pp. 3309-3325
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We analyse the metallicity histories of ∼4500 galaxies from the GAMA survey at z < 0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star formation histories, allow us to analyse the inferred gas-phase mass–metallicity relation. Furthermore, we extract the mass–metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass–metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass–metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three-dimensional mass–metallicity–SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED-fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED-fitting outputs.


1998 ◽  
Vol 11 (1) ◽  
pp. 121-122
Author(s):  
Claude Carignan

Recent studies (Puche & Westpfahl 1994, Young & Lo 1996) have shown that the distribution of HI in some extreme low luminosity dwarf irregular galaxies (e.g. M81dwA, Holmberg I, Leo A) tends to have a ring-like (or shell-like) distribution which suggests that a single burst of star formation could expell most of the remaining ISM (or at least a large fraction of it) from the system. In view of this, Puche & Westpfahl (1994) suggested that in dwarf spheroidal galaxies, the HI should be found at large radii since no young stellar population is observed in most of them.


Sign in / Sign up

Export Citation Format

Share Document