scholarly journals X-Ray Coronae from Stars

1998 ◽  
Vol 188 ◽  
pp. 13-16
Author(s):  
R. Pallavicini

A number of major advances in stellar coronal physics have occurred since 1990 mainly as a consequence of imaging observations by ROSAT and spectroscopic observations by ASCA. These can be summarised as follows: 1.an all-sky survey has been performed by ROSAT at a sensitivity of ~ 2 × 10−13 erg cm−2 s−1, complemented by pointed observations an order of magnitude deeper;2.complete mapping and deeper pointings have been obtained for virtually all open clusters closer than ~ 500 pc, and covering the age range from ~ 30 Myr to ~ 700 Myr;3.complete mapping and deeper paintings have been obtained for several Star Forming Regions (SFRs) covering the age range ~ 1 to ~ 10 Myr;4.spectroscopic observations of bright coronal sources have been obtained with EUVE and ASCA allowing the derivation of the temperature structure and elemental abundances.

1992 ◽  
Vol 9 ◽  
pp. 235-239
Author(s):  
J.H.M.M. Schmitt

The ROSAT all-sky survey has now been completed and the analysis of this huge body of data is in progress. While final results on the number of detected X-ray sources and their distribution in flux are not yet available, the total number of X-ray sources is expected to be around 60 000. Preliminary results from optical identifications of selected fields show that about one quarter of the X-ray sources discovered at high galactic latitudes come from by comparison nearby stellar sources (Fleming 1991), while at lower galactic latitudes up to one half of the detected X-ray sources are of stellar origin; in areas occupied by star forming regions (for example, Orion) or open clusters (for example, Hyades or Pleiades) a large number of the detected X-ray sources can be identified with young stars, yielding up to 80 percent of the total source count as galactic stars. For the whole of the ROSAT all-sky survey we may therefore expect about one third of the total sources to be of stellar origin. The vast majority of these stellar X-ray sources is of coronal origin (i.e., late-type low mass stars). Only a relatively small number of stellar X-ray sources will be associated with early-type massive stars where the X-ray emission is thought to arise from instabilities in their radiatively driven winds or metal-poor degenerate stars where the X-ray emission comes from portions of the atmosphere considerably hotter than the optically visible photosphere. From the preliminary analyses performed so far it is already clear now that supersoft sources such as white dwarfs do not constitute a major fraction of the X-ray source population found in the ROSAT all-sky survey and the number of newly X-ray discovered white dwarfs will certainly be considerably less than one thousand. The X-ray emitting late-type stars are commonly referred to as “active” stars, and the ROSAT all-sky survey catalog will comprise the most extensive list of such objects.


2017 ◽  
Vol 607 ◽  
pp. A130 ◽  
Author(s):  
A. Dutrey ◽  
S. Guilloteau ◽  
V. Piétu ◽  
E. Chapillon ◽  
V. Wakelam ◽  
...  

Context. Determining the gas density and temperature structures of protoplanetary disks is a fundamental task in order to constrain planet formation theories. This is a challenging procedure and most determinations are based on model-dependent assumptions. Aims. We attempt a direct determination of the radial and vertical temperature structure of the Flying Saucer disk, thanks to its favorable inclination of 90 degrees. Methods. We present a method based on the tomographic study of an edge-on disk. Using ALMA, we observe at 0.5″ resolution the Flying Saucer in CO J = 2–1 and CS J = 5–4. This edge-on disk appears in silhouette against the CO J = 2–1 emission from background molecular clouds in ρ Oph. The combination of velocity gradients due to the Keplerian rotation of the disk and intensity variations in the CO background as a function of velocity provide a direct measure of the gas temperature as a function of radius and height above the disk mid-plane. Results. The overall thermal structure is consistent with model predictions, with a cold (<12−15 K) CO-depleted mid-plane and a warmer disk atmosphere. However, we find evidence for CO gas along the mid-plane beyond a radius of about 200 au, coincident with a change of grain properties. Such behavior is expected in the case of efficient rise of UV penetration re-heating the disk and thus allowing CO thermal desorption or favoring direct CO photo-desorption. CO is also detected at up to 3–4 scale heights, while CS is confined to around 1 scale height above the mid-plane. The limits of the method due to finite spatial and spectral resolutions are also discussed. Conclusions. This method appears to be a very promising way to determine the gas structure of planet-forming disks, provided that the molecular data have an angular resolution which is high enough, on the order of 0.3−0.1″ at the distance of the nearest star-forming regions.


1997 ◽  
Vol 159 ◽  
pp. 439-440 ◽  
Author(s):  
Yu Gao

Luminous infrared galaxies (LIRGs), denned by the criterion LIR ≳ 2 × 1011L⊙ (for H0=75 kms−1 Mpc−1), are the most powerful IR sources in the Universe, with most of their emission (~ 90%) in the far-IR. Most LIRGs are interacting/merging galaxies with large amounts of molecular gas as revealed by CO surveys (Sanders et al. 1991; Solomon et al. 1996). However, whether starbursts or dust-enshrouded AGNs/QSOs dominate the IR luminosity is not resolved.CO may not trace the active star-forming regions where gas density is more than one order of magnitude higher than the average. Dense molecular gas is better traced by high dipole-moment molecules like HCN and CS (e.g., Nguyen-Q-Rieu et al. 1992; Gao & Solomon 1996). Therefore, it is essential to survey HCN emission in a large sample of LIRGs to better reveal the nature of LIRGs. We here study IR and molecular gas properties vs. galaxy-galaxy interactions in LIRGs over various merging phases to trace their evolution and explore some links among interactions, starbursts, and AGN phenomena.


2019 ◽  
Vol 492 (2) ◽  
pp. 2044-2057
Author(s):  
Ryan Cooke

ABSTRACT Detecting the change of a cosmological object’s redshift due to the time evolution of the Universal expansion rate is an ambitious experiment that will be attempted with future telescope facilities. In this paper, we describe the ACCELERATION programme, which aims to study the properties of the most underdense regions of the Universe. One of the highlight goals of this programme is to prepare for the redshift drift measurement. Using the EAGLE cosmological hydrodynamic simulations, we estimate the peculiar acceleration of gas in galaxies and the Lyα forest. We find that star-forming ‘cold neutral gas’ exhibits large peculiar acceleration due to the high local density of baryons near star-forming regions. We conclude that absorption by cold neutral gas is unlikely to yield a detection of the cosmological redshift drift. On the other hand, we find that the peculiar accelerations of Lyα forest absorbers are more than an order of magnitude below the expected cosmological signal. We also highlight that the numerous low H i column density systems display lower peculiar acceleration. Finally, we propose a new ‘Lyα cell’ technique that applies a small correction to the wavelength calibration to secure a relative measurement of the cosmic drift between two unrelated cosmological sources at different redshifts. For suitable combinations of absorption lines, the cosmological signal can be more than doubled, while the affect of the observer peculiar acceleration is mitigated. Using current data of four suitable Lyα cells, we infer a limit on the cosmological redshift drift to be $\dot{v}_{\rm obs}\lt 65~{\rm m~s}^{-1}~{\rm yr}^{-1}$ (2σ).


2002 ◽  
Vol 207 ◽  
pp. 94-104
Author(s):  
Eva K. Grebel

I summarize our knowledge of star clusters and associations in irregular galaxies other than the Magellanic Clouds in the Local Group. Surveys affording complete area coverage at high angular resolution are still lacking. Confirmed globular clusters are known only in NGC 6822 and WLM. Very few dIrrs contain populous or sparse open clusters. There is a pronounced deficiency of intermediate-age and young clusters. Apart from parent galaxy mass, the lack of interactions may be a key reason for the lack of cluster formation in the dIrrs. All dIrrs have one or several short-lived OB associations in the star-forming regions in their centers.


2020 ◽  
Vol 498 (4) ◽  
pp. 5972-5989
Author(s):  
D Nardiello

ABSTRACT Young associations in star-forming regions are stellar systems that allow us to understand the mechanisms that characterize the stars in their early life and what happens around them. In particular, the analysis of the discs and of the exoplanets around young stars allows us to know the key processes that prevail in their evolution and understand the properties of the exoplanets orbiting older stars. The Transiting Exoplanet Survey Satellite mission is giving us the opportunity to extract and analyse the light curves of association members with high accuracy, but the crowding that affects these regions makes difficult the light curve extraction. In the PATHOS project, cutting-edge tools are used to extract high-precision light curves and identify variable stars and transiting exoplanets in open clusters and associations. In this work, I analysed the light curves of stars in five young (≲10 Myr) associations, searching for variables and candidate exoplanets. Using the rotational periods of the association members, I constrained the ages of the five stellar systems (∼2–10 Myr). I searched for dippers, and I investigated the properties of the dust that forms the circumstellar discs. Finally, I searched for transiting signals, finding six strong candidate exoplanets. No candidates with radius RP ≲ 0.9 RJ have been detected, in agreement with the expectations. The frequency of giant planets resulted to be ∼2–3 per cent, higher than that expected for field stars (≲ 1 per cent); the low statistic makes this conclusion not strong, and new investigations on young objects are mandatory to confirm this result.


2019 ◽  
Vol 625 ◽  
pp. L3 ◽  
Author(s):  
S. Cuadrado ◽  
P. Salas ◽  
J. R. Goicoechea ◽  
J. Cernicharo ◽  
A. G. G. M. Tielens ◽  
...  

Context. A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (ne) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules. Aims. We determine ne in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [13C II] hyperfine line observations. Methods. We detect 12 mmCRLs (including α, β, and γ transitions) observed with the IRAM 30 m telescope, at ∼25″ angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR. Results. These lines trace the C+/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent H II region. This is readily seen from their narrow line profiles (Δv = 2.6 ± 0.4 km s−1) and line peak velocities (vLSR = +10.7 ± 0.2 km s−1). Optically thin [13C II] hyperfine lines and molecular lines – emitted close to the DF by trace species such as reactive ions CO+ and HOC+ – show the same line profiles. We use non-LTE excitation models of [13C II] and mmCRLs and derive ne = 60–100 cm−3 and Te = 500–600 K toward the DF. Conclusions. The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain Pth ≥ (2−4) × 108 cm−3 K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.


2007 ◽  
Vol 3 (S248) ◽  
pp. 481-483
Author(s):  
L. Chen ◽  
R. de Grijs ◽  
J. L. Zhao

AbstractWe derived proper motions and membership probabilities of stars in the regions of two very young (~ 2–4 Myr-old) open clusters NGC 2244 and NGC 6530. Both clusters show clear evidence of mass segregation, which provides strong support for the suggestion that the observed mass segregation is – at least partially – due to the way in which star formation has proceeded in these complex star-forming regions (“primordial” mass segregation).


1998 ◽  
Vol 15 (1) ◽  
pp. 165-166
Author(s):  
W. J. Zealey ◽  
S. L. Mader

AbstractThe Hα emission-line survey of the Southern Sky to be carried out by the AAO/UKST will provide deep, high resolution images of Galactic Plane sources allowing the detection of new and existing filamentary sources such as Herbig–Haro objects. Used in conjunction with the existing ESO/SERC Southern Sky Survey Plates, the Hα plates will provide us with the opportunity to study the morphology and environment of new and existing star forming regions.


2020 ◽  
Vol 496 (1) ◽  
pp. L111-L115
Author(s):  
Gavin A L Coleman ◽  
Thomas J Haworth

ABSTRACT Peter Pan discs are a recently discovered class of long-lived discs around low-mass stars that survive for an order of magnitude longer than typical discs. In this paper, we use disc evolutionary models to determine the required balance between initial conditions and the magnitude of dispersal processes for Peter Pan discs to be primordial. We find that we require low transport (α ∼ 10−4), extremely low external photoevaporation (${\le}10^{-9}\, {\rm M}_{\odot }\, {\rm yr^{-1}}$), and relatively high disc masses (&gt;0.25M*) to produce discs with ages and accretion rates consistent with Peter Pan discs. Higher transport (α = 10−3) results in disc lifetimes that are too short and even lower transport (α = 10−5) leads to accretion rates smaller than those observed. The required external photoevaporation rates are so low that primordial Peter Pan discs will have formed in rare environments on the periphery of low-mass star-forming regions, or deeply embedded, and as such have never subsequently been exposed to higher amounts of UV radiation. Given that such an external photoevaporation scenario is rare, the required disc parameters and accretion properties may reflect the initial conditions and accretion rates of a much larger fraction of the discs around low-mass stars.


Sign in / Sign up

Export Citation Format

Share Document