scholarly journals Discovery of X-Ray Emission from the Radio SNR G352.7-0.1

1998 ◽  
Vol 188 ◽  
pp. 251-252
Author(s):  
K. Kinugasa ◽  
K. Torii ◽  
H. Tsunemi ◽  
S. Yamauchi ◽  
K. Koyama ◽  
...  

One major objective of our ASCA Galactic Plane Survey Project (AGPSP) is, utilizing the wide and high energy band (up to 10 keV) X-ray imaging capability and the high spectral resolving power of ASCA, to search possible X-ray SNRs in the Galactic inner disk. The observation of the field including G352.7-0.1 reported in this paper, was performed on 1996 March 14 during the first AO4 survey. We report on the X-ray SNR G352.7-0.1 found in AGPSP. G352.7-0.1 is one of the radio SNRs (Green 1996), and is classified as a shell-like SNR with the size of 8' x 6'.

2019 ◽  
Vol 629 ◽  
pp. A147 ◽  
Author(s):  
A.-M. Broomhall ◽  
A. E. L. Thomas ◽  
C. E. Pugh ◽  
J. P. Pye ◽  
S. R. Rosen

Context. Quasi-periodic pulsations (QPPs) are time variations in the energy emission during a flare that are observed on both the Sun and other stars and thus have the potential to link the physics of solar and stellar flares. Aims. We characterise the QPPs detected in an X-ray flare on the solar analogue, EK Draconis, which was observed by XMM-Newton. Methods. We used wavelet and autocorrelation techniques to identify the QPPs in a detrended version of the flare. We also fitted a model to the flare based on an exponential decay combined with a decaying sinusoid. The flare is examined in multiple energy bands. Results. A statistically significant QPP is observed in the X-ray energy band of 0.2–12.0 keV with a periodicity of 76 ± 2 min. When this energy band is split, a statistically significant QPP is observed in the low-energy band (0.2–1.0 keV) with a periodicity of 73 ± 2 min and in the high-energy band (1.0–12.0 keV) with a periodicity of 82 ± 2 min. When fitting a model to the time series the phases of the signals are also found to be significantly different in the two energy bands (with a difference of 1.8 ± 0.2 rad) and the high-energy band is found to lead the low-energy band. Furthermore, the first peak in the cross-correlation between the detrended residuals of the low- and high-energy bands is offset from zero by more than 3σ (4.1 ± 1.3 min). Both energy bands produce statistically significant regions in the wavelet spectrum, whose periods are consistent with those listed above. However, the peaks are broad in both the wavelet and global power spectra, with the wavelet showing evidence for a drift in period with time, and the difference in period obtained is not significant. The offset in the first peak in the cross-correlation of the detrended residuals of two non-congruent energy bands (0.5−1.0 keV and 4.5−12.0 keV) is found to be even larger (10 ± 2 min). However, the signal-to-noise in the higher of these two energy-bands, covering the range 4.5−12.0 keV, is low. Conclusions. The presence of QPPs similar to those observed on the Sun, and other stars, suggests that the physics of flares on this young solar analogue is similar to the physics of solar flares. It is possible that the differences in the QPPs detected in the two energy bands are seen because each band observes a different plasma structure. However, the phase difference, which differs more significantly between the two energy bands than the period, could also be explained in terms of the Neupert effect. This suggests that QPPs are caused by the modulation of the propagation speeds of charged particles.


1994 ◽  
Vol 159 ◽  
pp. 366-367
Author(s):  
Hongguang Bi

Like radio and optical observations of AGN/Galaxy pairs (e.g. Carilli, C & van Gorkom, J. 1992, ApJ, 399, 373), X-ray observations of the pairs can reveal absorption at high energy band, and also, possible galactic gaseous X-ray emissions that are very useful in constructing halo models. ROSAT/PSPC X-ray spectra of 4 AGNs in the well-known pairs 3C232/NGC 3067, 3C275.1/NGC 4651, 3C309.1/NGC 5832 and Mrk474/NGC 5682 are reported here. Especially, we have detected an extragalactic HI of NGC 5862 in the Mrk474 spectrum.


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


1998 ◽  
Author(s):  
James L. Matteson ◽  
Duane E. Gruber ◽  
William A. Heindl ◽  
Michael R. Pelling ◽  
Laurence E. Peterson ◽  
...  

2014 ◽  
Vol 10 (S312) ◽  
pp. 36-38
Author(s):  
Junfeng Wang

AbstractThe circum-nuclear region in an active galaxy is often complex with presence of high excitation gas, collimated radio outflow, and star formation activities, besides the actively accreting supermassive black hole. The unique spatial resolving power of Chandra X-ray imaging spectroscopy enables more investigations to disentangle the active galactic nuclei and starburst activities. For galaxies in the throes of a violent merging event such as NGC6240, we were able to resolve the high temperature gas surrounding its binary active black holes and discovered a large scale soft X-ray halo.


2005 ◽  
Vol 12 (4) ◽  
pp. 534-536 ◽  
Author(s):  
Akio Yoneyama ◽  
Tohoru Takeda ◽  
Yoshinori Tsuchiya ◽  
Jin Wu ◽  
Thet-Thet Lwin ◽  
...  

2020 ◽  
Vol 492 (3) ◽  
pp. 3657-3661 ◽  
Author(s):  
M Fiocchi ◽  
F Onori ◽  
A Bazzano ◽  
A J Bird ◽  
A Bodaghee ◽  
...  

ABSTRACT We report on a recent bright outburst from the new X-ray binary transient MAXI J1631–479, observed in January 2019. In particular, we present the 30–200 keV analysis of spectral transitions observed with INTEGRAL/IBIS during its Galactic plane monitoring program. In the MAXI and BAT monitoring period, we observed two different spectral transitions between the high/soft and low/hard states. The INTEGRAL spectrum from data taken soon before the second transition is best described by a Comptonized thermal component with a temperature of kTe ∼ 30 keV and a high-luminosity value of $L_{2-200\, \mathrm{keV}}\sim 3\times 10^{38}$ erg−1 (assuming a distance of 8 kpc). During the second transition, the source shows a hard, power-law spectrum. The lack of high energy cut-off indicates that the hard X-ray spectrum from MAXI J1631–479 is due to a non-thermal emission. Inverse Compton scattering of soft X-ray photons from a non-thermal or hybrid thermal/non-thermal electron distribution can explain the observed X-ray spectrum although a contribution to the hard X-ray emission from a jet cannot be determined at this stage. The outburst evolution in the hardness-intensity diagram, the spectral characteristics, and the rise and decay times of the outburst are suggesting that this system is a black hole candidate.


2014 ◽  
Vol 793 (2) ◽  
pp. 90 ◽  
Author(s):  
Hongjun An ◽  
Kristin K. Madsen ◽  
Stephen P. Reynolds ◽  
Victoria M. Kaspi ◽  
Fiona A. Harrison ◽  
...  

2016 ◽  
Vol 12 (S324) ◽  
pp. 338-341
Author(s):  
René W. Goosmann

AbstractThree dedicated X-ray polarimetry mission projects are currently under phase A study at NASA and ESA. The need for this new observational window is more apparent than ever. On behalf of the consortium behind the X-ray Imaging Polarimetry Explorer (XIPE) we present here some prospects of X-ray polarimetry for our understanding of supermassive and stellar mass black hole systems. X-ray polarimetry is going to discriminate between leptonic and hadronic jet models in radio-loud active galactic nuclei. For leptonic jets it also puts important constraints on the origin of the seed photons that constitute the high energy emission via Comptonization. Another important application of X-ray polarimetry allows us to clarify the accretion history of the supermassive black hole at the Galactic Center. In a few Black Hole X-ray binary systems, X-ray polarimetry allows us to estimate in a new, independent way the angular momentum of the black hole.


Sign in / Sign up

Export Citation Format

Share Document