scholarly journals New constants for Sampson-Lieske theory of the Galilean satellites of Jupiter from mutual occultation data

1996 ◽  
Vol 172 ◽  
pp. 145-150 ◽  
Author(s):  
R. Vasundhara ◽  
J.E. Arlot ◽  
P. Descamps

New constants for Sampson-Lieske theory of the Galilean Satellites have been derived using 6360 individual photographic positions (1891–1990) and 438 pseudo astrometric positions from mutual occultations during 1973, 1979, 1985 and 1991. Using these new sets of constants, significant improvement is noticed in the O-C values of the sky plane coordinates of the mutual event data set and residuals in longitude for Io and Europa are found to improve. Problems concerning the inclusion of mutual event data in attempting evaluation of secular variations of the mean motions of the satellites are discussed.

1993 ◽  
Vol 83 (4) ◽  
pp. 1213-1231
Author(s):  
Dorthe B. Carr

Abstract The effect of local geology and noise conditions on the performance of a small regional array is investigated by comparing the regional Pn backazimuth estimation capabilities of the ARCESS array in northern Norway to the NORESS array. A broadband frequency-wavenumber estimator was used to calculate backazimuths from the Pn arrival for each of 203 regional events recorded at ARCESS while varying element spacing, frequency band, and time window. Most of the errors in backazimuth are less than 20° when appropriate parameter combinations are used, and mean backazimuth errors are close to zero. The best results are obtained using a 13-element configuration that has a 1.4 km aperture and a maximum station spacing of about 600 m. With the 13-element configuration and the data filtered to include frequencies between 3 and 10 Hz, the mean errors for the 203 event data set are less than 0.9°, and S.D. are as small as 16.9°. There are differences seen in the backazimuth estimation capabilities of ARCESS and NORESS with specific parameter combinations. The larger aperture configurations (10- and 17-elements) have smaller means at ARCESS, although the precision is about the same. The estimates using unfiltered data at ARCESS are poor, because of local noise conditions that increase the level of background noise at low frequencies. Overall the precision is better at NORESS, but both regional arrays have the best results using the 13-element configuration and filtering the data in the middle frequency range (3 to 10 Hz). Other factors investigated include SNR and source region. Backazimuth estimation statistics improve if only events with 5 dB of SNR are included in the data set at both ARCESS and NORESS. The mean errors move closer to zero and standard deviations decrease. The differences between the two arrays are not as pronounced. There are some path effects from different source regions around the ARCESS array. However, combinations of small aperture configurations and middle (3 to 10 Hz) frequency bands work well for events over the entire distance range of 30 to 1200 km. ARCESS and NORESS have similar backazimuth estimation capabilities even though there are differences in the local geology and noise conditions. Because a 13-element configuration produces reliable results for both arrays, it would be reasonable to reduce the number of elements in a regional array. This in turn will reduce the costs associated with building and deploying small regional arrays.


1978 ◽  
Vol 41 ◽  
pp. 209-236
Author(s):  
S. Ferraz-Mello

AbstractThe theory of the motion of the Galilean satellites of Jupiter is developed up to the second-order terms. The disturbing forces are those due to mutual attractions, to the non-symmetrical internal mass distribution of Jupiter and to the attraction from the Sun. The mean equator of Jupiter is taken as the reference plane and its motion is considered. The integration of the equations is performed. The geometric equations are solved for the case in which the amplitude of libration is zero. The perturbation method is shortly commented on the grounds of some recent advances in non-linear mechanics.In a previous paper (Ferraz-Mello, 1974) one perturbation theory has been constructed with special regard to the problem of the motion of the Galilean satellites of Jupiter. In this problem, the motions are nearly circular and coplanar; on the other hand the quasi-resonances lead to strong perturbations. The main characteristic of the theory is that it allows the main frequencies to be kept fixed from the earlier stages, and so, to have a purely trigonometric solution.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.


2021 ◽  
pp. 096228022110028
Author(s):  
T Baghfalaki ◽  
M Ganjali

Joint modeling of zero-inflated count and time-to-event data is usually performed by applying the shared random effect model. This kind of joint modeling can be considered as a latent Gaussian model. In this paper, the approach of integrated nested Laplace approximation (INLA) is used to perform approximate Bayesian approach for the joint modeling. We propose a zero-inflated hurdle model under Poisson or negative binomial distributional assumption as sub-model for count data. Also, a Weibull model is used as survival time sub-model. In addition to the usual joint linear model, a joint partially linear model is also considered to take into account the non-linear effect of time on the longitudinal count response. The performance of the method is investigated using some simulation studies and its achievement is compared with the usual approach via the Bayesian paradigm of Monte Carlo Markov Chain (MCMC). Also, we apply the proposed method to analyze two real data sets. The first one is the data about a longitudinal study of pregnancy and the second one is a data set obtained of a HIV study.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sidney R. Lehky ◽  
Keiji Tanaka ◽  
Anne B. Sereno

AbstractWhen measuring sparseness in neural populations as an indicator of efficient coding, an implicit assumption is that each stimulus activates a different random set of neurons. In other words, population responses to different stimuli are, on average, uncorrelated. Here we examine neurophysiological data from four lobes of macaque monkey cortex, including V1, V2, MT, anterior inferotemporal cortex, lateral intraparietal cortex, the frontal eye fields, and perirhinal cortex, to determine how correlated population responses are. We call the mean correlation the pseudosparseness index, because high pseudosparseness can mimic statistical properties of sparseness without being authentically sparse. In every data set we find high levels of pseudosparseness ranging from 0.59–0.98, substantially greater than the value of 0.00 for authentic sparseness. This was true for synthetic and natural stimuli, as well as for single-electrode and multielectrode data. A model indicates that a key variable producing high pseudosparseness is the standard deviation of spontaneous activity across the population. Consistently high values of pseudosparseness in the data demand reconsideration of the sparse coding literature as well as consideration of the degree to which authentic sparseness provides a useful framework for understanding neural coding in the cortex.


Ocean Science ◽  
2010 ◽  
Vol 6 (4) ◽  
pp. 887-900 ◽  
Author(s):  
M. Ezam ◽  
A. A. Bidokhti ◽  
A. H. Javid

Abstract. A three dimensional numerical model namely POM (Princeton Ocean Model) and observational data are used to study the Persian Gulf outflow structure and its spreading pathways during 1992. In the model, the monthly wind speed data were taken from ICOADS (International Comprehensive Ocean-Atmosphere Data Set) and the monthly SST (sea surface temperatures) were taken from AVHRR (Advanced Very High Resolution Radiometer) with the addition of monthly net shortwave radiations from NCEP (National Center for Environmental Prediction). The mean monthly precipitation rates from NCEP data and the calculated evaporation rates are used to impose the surface salinity fluxes. At the open boundaries the temperature and salinity were prescribed from the mean monthly climatological values from WOA05 (World Ocean Atlas 2005). Also the four major components of the tide were prescribed at the open boundaries. The results show that the outflow mainly originates from two branches at different depths in the Persian Gulf. The permanent branch exists during the whole year deeper than 40 m along the Gulf axis and originates from the inner parts of the Persian Gulf. The other seasonal branch forms in the vicinity of the shallow southern coasts due to high evaporation rates during winter. Near the Strait of Hormuz the two branches join and form the main outflow source water. The results of simulations reveal that during the winter the outflow boundary current mainly detaches from the coast well before Ras Al Hamra Cape, however during summer the outflow seems to follow the coast even after this Cape. This is due to a higher density of the colder outflow that leads to more sinking near the coast in winter. Thus, the outflow moves to a deeper depth of about 500 m (for which some explanations are given) while the main part detaches and spreads at a depth of about 300 m. However in summer it all moves at a depth of about 200–250 m. During winter, the deeper, stronger and wider outflow is more affected by the steep topography, leading to separation from the coast. While during summer, the weaker and shallower outflow is less influenced by bottom topography and so continues along the boundary.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii83-ii83
Author(s):  
Nilan Vaghjiani ◽  
Andrew Schwieder ◽  
Sravya Uppalapati ◽  
Zachary Kons ◽  
Elizabeth Kazarian ◽  
...  

Abstract PURPOSE Radiation-induced meningiomas (RIMs) are associated with previous exposure to therapeutic irradiation. RIMs are rare and have not been well characterized relative to spontaneous meningiomas (SMs). METHODS 1003 patients with proven or presumed meningiomas were identified from the VCU brain tumor database. Chart review classified RIM patients and their characteristics. RESULTS Of the 1003 total patients, 76.47% were female with a mean ± SD age of 67.55 ± 15.50 years. 15 RIM patients were identified (66.67% female), with a mean ± SD age of 52.67 ± 15.46 years, 5 were African American and 10 were Caucasian. The incidence of RIMs was 1.49% in our data set. The mean age at diagnosis was 43.27 ± 15.06 years. The mean latency was 356.27 ± 116.96 months. The mean initiating dose was 44.28 ± 14.68 Gy. There was a significant difference between mean latency period and ethnicity, 258.3 months for African American population, and 405.2 months for Caucasian population (p = 0.003). There was a significant difference between the mean number of lesions in females (2.8) versus males (1.2; p = 0.046). Of the RIMs with characterized histology, 6 (55%) were WHO grade II and 5 (45%) were WHO grade I, demonstrating a prevalence of grade II tumors approximately double that found with SMs. RIMs were treated with combinations of observation, surgery, radiation, and medical therapy. Of the 8 patients treated with radiation, 4 demonstrated response. 8 of the 15 patients (53%) demonstrated recurrence/progression despite treatment. CONCLUSION RIMs are important because of the associated higher grade histology, gender, and ethnic incidences, and increased recurrence/progression compared to SMs. Despite the presumed contributory role of prior radiation, RIMs demonstrate a significant rate of responsiveness to radiation treatment.


2021 ◽  
pp. 58-60
Author(s):  
Naziru Fadisanku Haruna ◽  
Ran Vijay Kumar Singh ◽  
Samsudeen Dahiru

In This paper a modied ratio-type estimator for nite population mean under stratied random sampling using single auxiliary variable has been proposed. The expression for mean square error and bias of the proposed estimator are derived up to the rst order of approximation. The expression for minimum mean square error of proposed estimator is also obtained. The mean square error the proposed estimator is compared with other existing estimators theoretically and condition are obtained under which proposed estimator performed better. A real life population data set has been considered to compare the efciency of the proposed estimator numerically.


2021 ◽  
Vol 87 (4) ◽  
pp. 283-293
Author(s):  
Wei Wang ◽  
Yuan Xu ◽  
Yingchao Ren ◽  
Gang Wang

Recently, performance improvement in facade parsing from 3D point clouds has been brought about by designing more complex network structures, which cost huge computing resources and do not take full advantage of prior knowledge of facade structure. Instead, from the perspective of data distribution, we construct a new hierarchical mesh multi-view data domain based on the characteristics of facade objects to achieve fusion of deep-learning models and prior knowledge, thereby significantly improving segmentation accuracy. We comprehensively evaluate the current mainstream method on the RueMonge 2014 data set and demonstrate the superiority of our method. The mean intersection-over-union index on the facade-parsing task reached 76.41%, which is 2.75% higher than the current best result. In addition, through comparative experiments, the reasons for the performance improvement of the proposed method are further analyzed.


Sign in / Sign up

Export Citation Format

Share Document