scholarly journals Are Voids Present in the Lyman-Alpha Forest?

1988 ◽  
Vol 130 ◽  
pp. 569-569
Author(s):  
Arlin P. S. Crotts

SummaryIf voids like those seen in the low z galaxy distribution existed in the H I distribution at z ≈ 2, then high quality QSO spectra, with many Ly-α forest lines per unit z, could be used to discern the voids from the usual random fluctuations in observed number density of lines (≡ n). Several such spectra have been obtained, and these show evidence for gaps in the Ly-α distribution on scales of 20 to 50 h−1Mpc (comoving coordinates, with h = H0/66.7 km s−1Mpc−1, assuming q0 = 0.1). These results are summarized in the table below. All QSO spectra with a line-of-sight n of Ly-α lines n > 80 per unit z and total number of lines N > 40 known to the author are included (except that of PKS 2000-330 [c.f. Carswell and Rees 1987], which is broken into five separate segments of Ly-α forest by gaps in the data and a broad absorption line). Excluded are portions of these spectra where n falls more than 25% below the mean due to instrumental bias. For each of these the distribution of gaps between nearest-neighbor Ly-α redshifts is computed as a function of gap size. If the distribution of redshifts were Poisson, the distribution of gaps should be a decreasing exponential function of gap size. For the two best spectra, large deviations from an exponential are found in the range of 20 to 50 h−1Mpc (in the other four cases, it should be noted that a large number of gaps of such sizes are still expected from Poisson fluctuations). The probability that such deviations are statistically consistent with an exponential distribution is shown in the fifth column of the table.

Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Goki Kamei ◽  
Shigeki Ishibashi ◽  
Koki Yoshioka ◽  
Satoru Sakurai ◽  
Hiroyuki Inoue ◽  
...  

Abstract Background In total knee arthroplasty (TKA) using the modified gap technique, the soft-tissue balance is measured after osteotomy of the distal femur and proximal tibia (conventional bone gap). However, after osteotomy, the flexion gap size during 90° knee flexion may be larger than that observed after implantation. The tension of the lateral compartment during 90° flexion may also be reduced after osteotomy of the distal femur. We manufactured a distal femoral trial component to reproduce the condition after implantation and prior to posterior condyle osteotomy. This study aimed to evaluate the effect of the trial component on the flexion gap. Methods This prospective study included 21 consecutive patients aged 78 years with medial osteoarthritis who underwent cruciate-retaining TKA between February 2017 and March 2018. The postoperative flexion gap size and inclination during 90° flexion were compared between cases with and without the trial component. Results The mean joint gap size with the trial component (13.4 ± 0.80 mm) was significantly smaller than that without the trial component (14.7 ± 0.84 mm). The mean gap inclination angle with the trial component (3.7° ± 0.62°) was significantly smaller than that without the trial component (5.5° ± 0.78°). Conclusions In the present study, the joint gap size and medial tension were significantly reduced after the trial component had been set. Accurate measurement of the soft-tissue balance is an important factor in the modified gap technique, and this method using a distal femoral trial component can offer better outcomes than those achieved with conventional methods.


1999 ◽  
Author(s):  
M. Machacek ◽  
G. L. Bryan ◽  
P. Anninos ◽  
A. Meiksin ◽  
M. L. Norman ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bui Duc Tinh ◽  
Nguyen Quang Hoc ◽  
Dinh Quang Vinh ◽  
Tran Dinh Cuong ◽  
Nguyen Duc Hien

The analytic expressions for the thermodynamic and elastic quantities such as the mean nearest neighbor distance, the free energy, the isothermal compressibility, the thermal expansion coefficient, the heat capacities at constant volume and at constant pressure, the Young modulus, the bulk modulus, the rigidity modulus, and the elastic constants of binary interstitial alloy with body-centered cubic (BCC) structure, and the small concentration of interstitial atoms (below 5%) are derived by the statistical moment method. The theoretical results are applied to interstitial alloy FeC in the interval of temperature from 100 to 1000 K and in the interval of interstitial atom concentration from 0 to 5%. In special cases, we obtain the thermodynamic quantities of main metal Fe with BCC structure. Our calculated results for some thermodynamic and elastic quantities of main metal Fe and alloy FeC are compared with experiments.


2011 ◽  
Vol 25 (12n13) ◽  
pp. 1041-1051 ◽  
Author(s):  
HO KHAC HIEU ◽  
VU VAN HUNG

Using the statistical moment method (SMM), the temperature and pressure dependences of thermodynamic quantities of zinc-blende-type semiconductors have been investigated. The analytical expressions of the nearest-neighbor distances, the change of volumes and the mean-square atomic displacements (MSDs) have been derived. Numerical calculations have been performed for a series of zinc-blende-type semiconductors: GaAs , GaP , GaSb , InAs , InP and InSb . The agreement between our calculations and both earlier other theoretical results and experimental data is a support for our new theory in investigating the temperature and pressure dependences of thermodynamic quantities of semiconductors.


2014 ◽  
Author(s):  
Kolea Zimmerman ◽  
Daniel Levitis ◽  
Ethan Addicott ◽  
Anne Pringle

We present a novel algorithm for the design of crossing experiments. The algorithm identifies a set of individuals (a ?crossing-set?) from a larger pool of potential crossing-sets by maximizing the diversity of traits of interest, for example, maximizing the range of genetic and geographic distances between individuals included in the crossing-set. To calculate diversity, we use the mean nearest neighbor distance of crosses plotted in trait space. We implement our algorithm on a real dataset ofNeurospora crassastrains, using the genetic and geographic distances between potential crosses as a two-dimensional trait space. In simulated mating experiments, crossing-sets selected by our algorithm provide better estimates of underlying parameter values than randomly chosen crossing-sets.


1995 ◽  
Vol 110 ◽  
pp. 1526 ◽  
Author(s):  
Esther M. Hu ◽  
Tae-Sun Kim ◽  
Lennox L. Cowie ◽  
Antoinette Songaila ◽  
Michael Rauch

1995 ◽  
Vol 448 (2) ◽  
Author(s):  
Avery Meiksin ◽  
Franois R. Bouchet

1996 ◽  
Vol 10 (12) ◽  
pp. 1397-1423 ◽  
Author(s):  
MASA-AKI OZAKI ◽  
EIJI MIYAI ◽  
TOMOAKI KONISHI ◽  
KAORU HANAFUSA

This paper describes group theoretical classification of superconducting states (SC) in the extended Hubbard model with on-site repulsion (U), nearest neighbor attraction (V) and nearest neighbour exchange interaction (J) on the two-dimensional square lattice using the mean field approach. By decomposing the pairing interaction into irreducible parts; A1g, B1g and Eu of D4h point symmetry, we have derived two singlet SCs (s-wave and d-wave) from A1g and B1g, eight triplet SCs from Eu. The first three types of triplet SC have pairing by electrons with antiparallel spin, the second two types have pairing by electrons with equal spin and the last three types are non-unitary and have pairing by only up-spin electrons. We showed that three non-unitary states have to be accompanied with a ferromagnetic order from the structure of the maximal little groups. We performed numerical studies for these SCs. For parameters and electron density favorable for the ferromagnetic order, a non-unitary SC coexistent with ferromagnetism is most stable.


Sign in / Sign up

Export Citation Format

Share Document