scholarly journals The radio morphology of quasars at high redshift

1986 ◽  
Vol 119 ◽  
pp. 181-184 ◽  
Author(s):  
P. D. Barthel

The mapping at kpc-scale resolution of the radio sources associated with quasars is fascinating, since it provides us with morphological information on a population of objects during 1010.3 y evolution of the universe, as well as information on a possible epoch dependence of the influence of the ambient medium on the properties of these objects.

1996 ◽  
Vol 175 ◽  
pp. 513-514
Author(s):  
J. D. B. Law-Green

DRAGNs (Double Radio sources Associated with Galactic Nuclei, Leahy 1991) are the class of powerful extragalactic radio sources thought to be produced by the interaction of a jet with the ambient medium. They exhibit strong cosmological evolution in comoving number density; at z ≃ 2 the “classical double” FR II DRAGNs were ≃ 1000 times as common as they are now (Dunlop & Peacock 1990).To understand this, systematic studies of complete DRAGN samples at low and high z and differing levels of flux density are required, in order to resolve the P – z ambiguity. The Distant DRAGNs Survey is a long-term project to image with the VLA and MERLIN, matched samples of DRAGNs at high redshift.


1996 ◽  
Vol 175 ◽  
pp. 321-322
Author(s):  
M. Lacy ◽  
S. Rawlings ◽  
M. Wold ◽  
A. Bunker ◽  
K.M. Blundell ◽  
...  

The most powerful radio sources in the local Universe are found in giant elliptical galaxies. Looking back to a redshift of 0.5 (≈ half the age of the Universe for ω = 1), we see that these host galaxies are increasingly found in moderately rich clusters. This fact gives us hope that radio sources can be used as tracers of high density environments at high redshift. By exploiting radio source samples selected over a wide range in luminosity (Blundell et al., these proceedings), we will also be able to test whether the luminosities of radio sources are correlated with their environments.


2012 ◽  
Vol 428 (3) ◽  
pp. 2053-2063 ◽  
Author(s):  
S. J. Curran ◽  
M. T. Whiting ◽  
E. M. Sadler ◽  
C. Bignell
Keyword(s):  

2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2014 ◽  
Vol 10 (S313) ◽  
pp. 231-235
Author(s):  
Leah K. Morabito ◽  
Adam Deller ◽  
J. B. R. Oonk ◽  
Huub Röttgering ◽  
George Miley

AbstractThe correlation between radio spectral steepness and redshift has been successfully used to find high redshift (z ⩾ 2) radio galaxies, but the origin of this relation is unknown. The ultra-steep spectra of high-z radio sources make them ideally suited for studies with the Low Band Antenna of the new Low Frequency Array, which covers 10–80 MHz and has baselines up to about 1300 km. As part of an ongoing survey, we use the longest baselines to map the low-frequency (< 70 MHz) spatial distributions along the jets of 5 bright extended steep spectrum high-z radio sources. From this, we will determine whether the spectra change over these spatially resolved sources, thereby constraining particle acceleration processes. We present early results from our low-frequency survey of ultra-steep spectrum radio galaxies. The first low frequency long baseline images of these objects are presented.


Think ◽  
2021 ◽  
Vol 21 (60) ◽  
pp. 33-49
Author(s):  
William Lyons

The author sets out to respond to the student complaint that ‘Philosophy did not answer “the big questions”’, in particular the question ‘What is the meaning of life?’ The response first outlines and evaluates the most common religious answer, that human life is given a meaning by God who created us and informs us that this life is just the pilgrim way to the next eternal life in heaven. He then discusses the response that, from the point of view of post-Darwinian science and the evolution of the universe and all that is in it, human life on Earth must be afforded no more meaning than the meaning we would give to a microscopic planaria or to some creature on another planet in a distant universe. All things including human creatures on Planet Earth just exist for a time and that is that. There is no plan or purpose. In the last sections the author outlines the view that it is we humans ourselves who give meaning to our lives by our choices of values or things that are worth pursuing and through our resulting sense of achievement or the opposite. Nevertheless the question ‘What is the meaning of life?’ can mean quite different things in different contexts, and so merit different if related answers. From one point of view one answer may lie in terms of the love of one human for another.


2021 ◽  
pp. 2150111
Author(s):  
Fei-Quan Tu ◽  
Bin Sun ◽  
Meng Wan ◽  
Qi-Hong Huang

Entropy is a key concept widely used in physics and other fields. At the same time, the meaning of entropy with different names and the relationship among them are confusing. In this paper, we discuss the relationship among the Clausius entropy, Boltzmann entropy and information entropy and further show that the three kinds of entropy are equivalent to each other to some extent. Moreover, we point out that the evolution of the universe is a process of entropy increment and life originates from the original low entropy of the universe. Finally, we discuss the evolution of the entire universe composed of the cosmological horizon and the space surrounded by it and interpret the entropy as a measure of information of all microstates corresponding to a certain macrostate. Under this explanation, the thermodynamic entropy and information entropy are unified and we can conclude that the sum of the entropy of horizon and the entropy of matter in the space surrounded by the horizon does not decrease with time if the second law of thermodynamics holds for the entire universe.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Aleksander Stachowski ◽  
Marek Szydłowski ◽  
Krzysztof Urbanowski

We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the time reversal symmetry. We show that if we replace the cosmological time t appearing in the equation describing the evolution of the Universe by the Hubble cosmological scale time, then we obtain time dependent Λ(t) in the form of the series of even powers of the Hubble parameter H: Λ(t)=Λ(H). Our special attention is focused on radioactive-like exponential form of the decay process of the dark energy and on the consequences of this type decay.


Sign in / Sign up

Export Citation Format

Share Document