scholarly journals The Origin of Continuum Emission in Active Galactic Nuclei

1994 ◽  
Vol 159 ◽  
pp. 5-16 ◽  
Author(s):  
Joel N. Bregman

The general understanding of the continuum emission from AGN has changed from the picture where nonthermal processes were responsible for all of the emission. The current body of observation indicates that there are two types of objects, one being the blazar class (or blazar component), where nearly all of the emission is nonthermal, due primarily to synchrotron and inverse Compton emission. Variability studies indicate that the emitting region decreases with size from the radio through the X-ray region, where the size of the X-ray region is of order a light hour. More than two dozen of these radio-loud AGNs have been detected at GeV energies (one source at TeV energies), for which the radiation mechanism may be inverse Compton mechanism.In the other class, the radio-quiet AGN (component), the emission is almost entirely thermal, with radiation from dust dominating the near infrared to submillimeter region. The optical to soft X-ray emission is often ascribed to black body emission from an opaque accretion disk, but variability studies may not be consistent with expectations. Another attractive model has free-free emission being responsible for the optical to soft X-ray emission. The highest frequencies at which these AGN are detected is the MeV range, and these data should help to determine if this emission is produced in a scattering atmosphere, such as that around an accretion disk, or by another model involving an opaque pair plasma.

Author(s):  
S Carniani ◽  
S Gallerani ◽  
L Vallini ◽  
A Pallottini ◽  
M Tazzari ◽  
...  

Abstract We present Atacama Large Millimiter/submillimiter Array (ALMA) observations of eight highly excited CO (${\rm J_{\rm up}}$ >8) lines and continuum emission in two z ∼ 6 quasars: SDSS J231038.88+185519.7 (hereafter J2310), for which CO(8-7), CO(9-8), and CO(17-16) lines have been observed, and ULAS J131911.29+095951.4 (J1319), observed in the CO(14-13), CO(17-16) and CO(19-18) lines. The continuum emission of both quasars arises from a compact region (<0.9 kpc). By assuming a modified black-body law, we estimate dust masses of Log(Mdust/M⊙) = 8.75 ± 0.07 and Log(Mdust/M⊙) = 8.8 ± 0.2 and dust temperatures of Tdust = 76 ± 3 K and $T_{\rm dust}=66^{+15}_{-10}~{\rm K}$, respectively for J2310 and J1319. Only CO(8-7) and CO(9-8) in J2310 are detected, while 3σ upper limits on luminosities are reported for the other lines of both quasars. The CO line luminosities and upper limits measured in J2310 and J1319 are consistent with those observed in local AGN and starburst galaxies, and other z ∼ 6 quasars, except for SDSS J1148+5251 (J1148), the only quasar at z = 6.4 with a previous CO(17-16) line detection. By computing the CO SLEDs normalised to the CO(6-5) line and FIR luminosities for J2310, J1319, and J1149, we conclude that different gas heating mechanisms (X-ray radiation and/or shocks) may explain the different CO luminosities observed in these z ∼ 6 quasar. Future ${\rm J_{\rm up}}$ >8 CO observations will be crucial to understand the processes responsible for molecular gas excitation in luminous high-z quasars.


2018 ◽  
Vol 619 ◽  
pp. A112 ◽  
Author(s):  
J. S. Kaastra ◽  
M. Mehdipour ◽  
E. Behar ◽  
S. Bianchi ◽  
G. Branduardi-Raymont ◽  
...  

Context. Obscuration of the continuum emission from active galactic nuclei by streams of gas with relatively high velocity (>1000 km s−1) and column density (>3 × 1025 m−2) has been seen in a few Seyfert galaxies. This obscuration has a transient nature. In December 2016 we witnessed such an event in NGC 3783. Aims. The frequency and duration of these obscuration events is poorly known. Here we study archival data of NGC 3783 in order to constrain this duty cycle. Methods. We use archival Chandra/NuSTAR spectra taken in August 2016. We also study the hardness ratio of all Swift XRT spectra taken between 2008 and 2017. Results. In August 2016, NGC 3783 also showed evidence of obscuration. While the column density of the obscuring material is ten times lower than in December 2016, the opacity is still sufficient to block a significant fraction of the ionising X-ray and extreme ultraviolet photons. From the Swift hardness ratio behaviour we find several other epochs with obscuration. Obscuration with columns >1026 m−2 may take place about half of the time. Also, in archival X-ray data taken by the Advanced Satellite for Cosmology and Astrophysics (ASCA) in 1993 and 1996 we find evidence of obscuration. Conclusions. Obscuration of the ionising photons in NGC 3783 occurs more frequently than previously thought. This may not always have been recognised due to low-spectral-resolution observations, overly limited spectral bandwidth or confusion with underlying continuum variations.


1998 ◽  
Vol 505 (2) ◽  
pp. 594-606 ◽  
Author(s):  
K. Nandra ◽  
J. Clavel ◽  
R. A. Edelson ◽  
I. M. George ◽  
M. A. Malkan ◽  
...  

1983 ◽  
Vol 6 ◽  
pp. 531-533
Author(s):  
Geoffrey Burbidge

More than 20 years ago V. A. Ambartsumian proposed that much of the activity in galaxies was dominated and even generated by their nuclei. Subsequent observational work in radio, optical and x-ray frequencies has borne out his prophecy, and major interest has centered about the nature of the machine in the galactic nucleus. The major characteristic of this machine is that it releases energy rapidly and often spasmodically by processes which are not thermonuclear in origin.The original studies which led to the conclusion that nuclei were all important were observations of the powerful radio sources and Seyfert galaxies, and evidence for the ejection of gas from galaxies of many types. The realization that the synchrotron mechanism was the dominant radiation mechanism and the later studies of Compton radiation were fundamental in leading to the conclusion that large fluxes of relativistic particles must be generated in galactic nuclei.


2021 ◽  
Vol 923 (1) ◽  
pp. 3
Author(s):  
Amruta D. Jaodand ◽  
Adam T. Deller ◽  
Nina Gusinskaia ◽  
Jason W. T. Hessels ◽  
James C. A. Miller-Jones ◽  
...  

Abstract 3FGL J1544.6−1125 is a candidate transitional millisecond pulsar (tMSP). Similar to the well-established tMSPs—PSR J1023+0038, IGR J18245−2452, and XSS J12270−4859—3FGL J1544.6−1125 shows γ-ray emission and discrete X-ray “low” and “high” modes during its low-luminosity accretion-disk state. Coordinated radio/X-ray observations of PSR J1023+0038 in its current low-luminosity accretion-disk state showed rapidly variable radio continuum emission—possibly originating from a compact, self-absorbed jet, the “propellering” of accretion material, and/or pulsar moding. 3FGL J1544.6−1125 is currently the only other (candidate) tMSP system in this state, and can be studied to see whether tMSPs are typically radio-loud compared to other neutron star binaries. In this work, we present a quasi-simultaneous Very Large Array and Swift radio/X-ray campaign on 3FGL J1544.6−1125. We detect 10 GHz radio emission varying in flux density from 47.7 ± 6.0 μJy down to ≲15 μJy (3σ upper limit) at four epochs spanning three weeks. At the brightest epoch, the radio luminosity is L 5 GHz = (2.17 ± 0.17) × 1027 erg s−1 for a quasi-simultaneous X-ray luminosity L 2–10 keV = (4.32 ± 0.23) × 1033 erg s−1 (for an assumed distance of 3.8 kpc). These luminosities are close to those of PSR J1023+0038, and the results strengthen the case that 3FGL J1544.6−1125 is a tMSP showing similar phenomenology to PSR J1023+0038.


1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


2019 ◽  
Vol 628 ◽  
pp. A135 ◽  
Author(s):  
R. Arcodia ◽  
A. Merloni ◽  
K. Nandra ◽  
G. Ponti

The correlation observed between monochromatic X-ray and UV luminosities in radiatively-efficient active galactic nuclei (AGN) lacks a clear theoretical explanation despite being used for many applications. Such a correlation, with its small intrinsic scatter and its slope that is smaller than unity in log space, represents the compelling evidence that a mechanism regulating the energetic interaction between the accretion disk and the X-ray corona must be in place. This ensures that going from fainter to brighter sources the coronal emission increases less than the disk emission. We discuss here a self-consistently coupled disk-corona model that can identify this regulating mechanism in terms of modified viscosity prescriptions in the accretion disk. The model predicts a lower fraction of accretion power dissipated in the corona for higher accretion states. We then present a quantitative observational test of the model using a reference sample of broad-line AGN and modeling the disk-corona emission for each source in the LX − LUV plane. We used the slope, normalization, and scatter of the observed relation to constrain the parameters of the theoretical model. For non-spinning black holes and static coronae, we find that the accretion prescriptions that match the observed slope of the LX − LUV relation produce X-rays that are too weak with respect to the normalization of the observed relation. Instead, considering moderately-outflowing Comptonizing coronae and/or a more realistic high-spinning black hole population significantly relax the tension between the strength of the observed and modeled X-ray emission, while also predicting very low intrinsic scatter in the LX − LUV relation. In particular, this latter scenario traces a known selection effect of flux-limited samples that preferentially select high-spinning, hence brighter, sources.


1996 ◽  
Vol 171 ◽  
pp. 442-442
Author(s):  
T. Schmutzler ◽  
D. Breitschwerdt

The most puzzling observations concerning the LISM (distance < 100 pc) can be explained by a fast adiabatically cooled gas in the cavity of an old superbubble. The ultrasoft X-ray background and contributions to the C- and M-bands are due to the continuum emission of delayed recombination [1]. In contrast to collisional ionization equilibrium (CIE) models, but consistent with recent observations [2], our model predicts a lack of emission lines and a low emissivity in the EUV range. In the figure below we compare the emissivities resulting from CIE at T = 106 K and those from our model at T = 4.2 × 104 K. The basic feature of our model is a thermally self-consistent approach of the time-dependent evolution.


2019 ◽  
Vol 622 ◽  
pp. A29 ◽  
Author(s):  
Chandreyee Maitra ◽  
Frank Haberl ◽  
Valentin D. Ivanov ◽  
Maria-Rosa L. Cioni ◽  
Jacco Th. van Loon

Context. Finding active galactic nuclei (AGN) behind the Magellanic Clouds (MCs) is difficult because of the high stellar density in these fields. Although the first AGN behind the Small Magellanic Cloud (SMC) were reported in the 1980s, it is only recently that the number of AGN known behind the SMC has increased by several orders of magnitude. Aims. The mid-infrared colour selection technique has proven to be an efficient means of identifying AGN, especially obscured sources. The X-ray regime is complementary in this regard and we use XMM-Newton observations to support the identification of AGN behind the SMC. Methods. We present a catalogue of AGN behind the SMC by correlating an updated X-ray point-source catalogue from our XMM-Newton survey of the SMC with previously identified AGN from the literature as well as a list of candidates obtained from the ALLWISE mid-infrared colour-selection criterion. We studied the properties of the sample with respect to their redshifts, luminosities, and X-ray spectral characteristics. We also identified the near-infrared counterpart of the sources from the VISTA observations. Results. The redshift and luminosity distributions of the sample (where known) indicate that we detect sources ranging from nearby Seyfert galaxies to distant and obscured quasars. The X-ray hardness ratios are compatible with those typically expected for AGN, and the VISTA colours and variability are also consistent with AGN. A positive correlation was observed between the integrated X-ray flux (0.2–12 keV) and the ALLWISE and VISTA magnitudes. We further present a sample of new candidate AGN and candidates for obscured AGN. Together these make an interesting subset for further follow-up studies. An initial spectroscopic follow-up of 6 out of the 81 new candidates showed that all six sources are active galaxies, although two have narrow emission lines.


1990 ◽  
Vol 115 ◽  
pp. 205-208
Author(s):  
H. van der Woerd ◽  
N.E. White ◽  
S.M. Kahn

AbstractThe X-ray transient 4U1543-47 was observed in 1983 by the EXOSAT observatory near the maximum of an outburst. The X-ray spectrum was measured using a gas scintillation proportional counter (GSPC) and a transmission grating spectrometer (TGS). Two emission line features are resolved. A broad (FWHM ~2.7 keV) line at 5.9 keV is detected in the GSPC, which we interprete as a redshifted and broadened iron Kα line. The Une broadening and redshift may arise from either Compton scattering in a cool plasma with small optical depth (τ ≈ 5), or from Doppler and relativistic effects in the vicinity of a compact object. The spectrum below 2 keV, obtained with the TGS, shows evidence for a broad emission line feature at 0.74 keV, which may be an iron L-transition complex. However, we find that such an emission feature could be an artifact caused by an anomalously low interstellar absorption by neutral Oxygen. The continuum emission is extremely soft and is well described by an unsaturated Comptonized spectrum from a very cool plasma (kT = 0.84 keV) with large scattering depth (τ ≈ 27). The continuum spectrum is strikingly similar to that of black hole candidate LMC X-3.


Sign in / Sign up

Export Citation Format

Share Document