scholarly journals X-ray Spectroscopy of the Ultra-soft Transient 4U1543-47

1990 ◽  
Vol 115 ◽  
pp. 205-208
Author(s):  
H. van der Woerd ◽  
N.E. White ◽  
S.M. Kahn

AbstractThe X-ray transient 4U1543-47 was observed in 1983 by the EXOSAT observatory near the maximum of an outburst. The X-ray spectrum was measured using a gas scintillation proportional counter (GSPC) and a transmission grating spectrometer (TGS). Two emission line features are resolved. A broad (FWHM ~2.7 keV) line at 5.9 keV is detected in the GSPC, which we interprete as a redshifted and broadened iron Kα line. The Une broadening and redshift may arise from either Compton scattering in a cool plasma with small optical depth (τ ≈ 5), or from Doppler and relativistic effects in the vicinity of a compact object. The spectrum below 2 keV, obtained with the TGS, shows evidence for a broad emission line feature at 0.74 keV, which may be an iron L-transition complex. However, we find that such an emission feature could be an artifact caused by an anomalously low interstellar absorption by neutral Oxygen. The continuum emission is extremely soft and is well described by an unsaturated Comptonized spectrum from a very cool plasma (kT = 0.84 keV) with large scattering depth (τ ≈ 27). The continuum spectrum is strikingly similar to that of black hole candidate LMC X-3.

2010 ◽  
Vol 6 (S274) ◽  
pp. 369-372
Author(s):  
M. V. Cardaci ◽  
G. F. Hagele ◽  
M. Santos-Lleó ◽  
Y. Krongold ◽  
A. I. Díaz ◽  
...  

AbstractWe present a detailed analysis of all the X-ray data taken by the XMM-Newton satellite of a small sample of five Seyfert 1 galaxies: ESO 359-G19, HE 1143-1810, CTS A08.12, Mkn 110, and UGC 11763. Our aim is to characterize the different components of the material that print the absorption and emission features in the X-ray spectra of these objects. The continuum emission was studied through the EPIC spectra taking advantage of the spectral range of these cameras. The high resolution RGS spectra were analyzed in order to characterize the absorbing features and the emission line features that arise in the spectra of these sources.


1994 ◽  
Vol 159 ◽  
pp. 5-16 ◽  
Author(s):  
Joel N. Bregman

The general understanding of the continuum emission from AGN has changed from the picture where nonthermal processes were responsible for all of the emission. The current body of observation indicates that there are two types of objects, one being the blazar class (or blazar component), where nearly all of the emission is nonthermal, due primarily to synchrotron and inverse Compton emission. Variability studies indicate that the emitting region decreases with size from the radio through the X-ray region, where the size of the X-ray region is of order a light hour. More than two dozen of these radio-loud AGNs have been detected at GeV energies (one source at TeV energies), for which the radiation mechanism may be inverse Compton mechanism.In the other class, the radio-quiet AGN (component), the emission is almost entirely thermal, with radiation from dust dominating the near infrared to submillimeter region. The optical to soft X-ray emission is often ascribed to black body emission from an opaque accretion disk, but variability studies may not be consistent with expectations. Another attractive model has free-free emission being responsible for the optical to soft X-ray emission. The highest frequencies at which these AGN are detected is the MeV range, and these data should help to determine if this emission is produced in a scattering atmosphere, such as that around an accretion disk, or by another model involving an opaque pair plasma.


1996 ◽  
Vol 171 ◽  
pp. 442-442
Author(s):  
T. Schmutzler ◽  
D. Breitschwerdt

The most puzzling observations concerning the LISM (distance < 100 pc) can be explained by a fast adiabatically cooled gas in the cavity of an old superbubble. The ultrasoft X-ray background and contributions to the C- and M-bands are due to the continuum emission of delayed recombination [1]. In contrast to collisional ionization equilibrium (CIE) models, but consistent with recent observations [2], our model predicts a lack of emission lines and a low emissivity in the EUV range. In the figure below we compare the emissivities resulting from CIE at T = 106 K and those from our model at T = 4.2 × 104 K. The basic feature of our model is a thermally self-consistent approach of the time-dependent evolution.


1996 ◽  
Vol 158 ◽  
pp. 399-400
Author(s):  
M. R. Garcia ◽  
P. J. Callanan ◽  
J. E. McClintock ◽  
P. Zhao

We have followed the X-ray nova GRO J0422+32, spectroscopically and photometrically, throughout the decline to quiescence.In the final stages of decay (days 430…880 after the outburst, see Callanan et al. (1995) for the epoch 1995), the equivalent width (EW) of the Hα emission increases monotonically and the R magnitude decreases monotonically. This suggests that the flux in the Hα line is constant, while the continuum fades. The Hα flux is the product of the R band flux (F(R), arbitrarily scaled to 100 at R = 19 mag) and the EW, and is shown in the last column of the table below. The Hα flux varies by only ~ 30% while the continuum fades by a factor of eight (from R = 19 mag to R = 21.3 mag). So, to first order, the Hα luminosity is constant in the final stages of decay. While it is generally the case that the emission line EWs in individual dwarf novae also increase during the decay, the exact behavior seen in GRO J0422+32 is not what is seen for dwarf novae (on average). Using the relation between EW[Hβ] and Mv given in figure 6 of Patterson (1984), we would expect a factor of ~ 5 variation in the Hα flux during days 430…880. The stability of the Hα flux implies that somehow the emission line region is ‘disconnected’ from the continuum (R–band) emission region.


2019 ◽  
Vol 489 (4) ◽  
pp. 4783-4790 ◽  
Author(s):  
Kristen C Dage ◽  
Stephen E Zepf ◽  
Arash Bahramian ◽  
Jay Strader ◽  
Thomas J Maccarone ◽  
...  

ABSTRACT RZ2109 is the first of several extragalactic globular clusters shown to host an ultraluminous X-ray source. RZ2109 is particularly notable because optical spectroscopy shows it has broad, luminous [O iii] λλ4959,5007 emission, while also having no detectable hydrogen emission. The X-ray and optical characteristics of the source in RZ2109 make it a good candidate for being a stellar mass black hole accreting from a white dwarf donor (i.e. an ultracompact black hole X-ray binary). In this paper we present optical spectroscopic monitoring of the [O iii]5007 emission line from 2007 to 2018. We find that the flux of the emission line is significantly lower in recent observations from 2016 to 2018 than it was in earlier observations in 2007–2011. We also explore the behaviour of the emission line shape over time. Both the core and the wings of the emission line decline over time, with some evidence that the core declines more rapidly than the wings. However, the most recent observations (in 2019) unexpectedly show the emission line core rebrightening


2020 ◽  
Vol 240 ◽  
pp. 04001
Author(s):  
Fahmi Iman Alfarizki ◽  
Kiki Vierdayanti

Investigation of spectral evolution of four black hole candidates was carried out by using color-color diagram as well as spectral fitting on Swift/XRT data. Newly found candidates, which are classified as low-mass X-ray binary system based on their transient nature, are the focus of our work. We compare their spectral evolutions to that of XTE J1752-223, a transient system and a more convincing black hole candidate whose mass has been determined from spectral-timing correlation scaling. In addition, comparison to Cygnus X-1, a well-known stellar-mass black hole, was done despite its persistent nature. The spectral fitting, by using a combination of thermal disk and non-thermal component model, results in the innermost temperature values in the range of the typical innermost temperature of black hole binary which is 0.7 – 1.5 keV. The spectral evolutions of the candidates bear a resemblance to both Cygnus X-1 and XTE J1752-223. We note that during Swift/XRT observations, the spectra of Cygnus X-1 and IGR J17451-3022 are mostly dominated by the non- thermal component. We conclude that the compact object of MAXI J1535- 571 and MAXI J1828-249 is highly likely to be a black hole. However, the lack of data rendered conclusive result impossible for IGR J17454-2919.


1986 ◽  
Vol 119 ◽  
pp. 347-348
Author(s):  
J. T. Clarke ◽  
S. Bowyer ◽  
M. Grewing

Nearly simultaneous FUV and optical spectrophotometry of X-ray selected Seyfert galaxies has revealed an average Ly α/H β ratio of 22, a positive correlation between the ratio Ly α/H β and the width of the lines, and additional Ly α emission in the wings of one source which is not matched by emission in the Balmer line wings. However, we find no distinguishing features in the continuum emission from these X-ray selected objects compared with other samples. If the correlation between Ly α/H β and the width of the lines is found to apply to larger samples of Seyferts, it may be that our objects appear Ly α bright because they are also broad-lined compared with other samples.


Author(s):  
S Carniani ◽  
S Gallerani ◽  
L Vallini ◽  
A Pallottini ◽  
M Tazzari ◽  
...  

Abstract We present Atacama Large Millimiter/submillimiter Array (ALMA) observations of eight highly excited CO (${\rm J_{\rm up}}$ >8) lines and continuum emission in two z ∼ 6 quasars: SDSS J231038.88+185519.7 (hereafter J2310), for which CO(8-7), CO(9-8), and CO(17-16) lines have been observed, and ULAS J131911.29+095951.4 (J1319), observed in the CO(14-13), CO(17-16) and CO(19-18) lines. The continuum emission of both quasars arises from a compact region (<0.9 kpc). By assuming a modified black-body law, we estimate dust masses of Log(Mdust/M⊙) = 8.75 ± 0.07 and Log(Mdust/M⊙) = 8.8 ± 0.2 and dust temperatures of Tdust = 76 ± 3 K and $T_{\rm dust}=66^{+15}_{-10}~{\rm K}$, respectively for J2310 and J1319. Only CO(8-7) and CO(9-8) in J2310 are detected, while 3σ upper limits on luminosities are reported for the other lines of both quasars. The CO line luminosities and upper limits measured in J2310 and J1319 are consistent with those observed in local AGN and starburst galaxies, and other z ∼ 6 quasars, except for SDSS J1148+5251 (J1148), the only quasar at z = 6.4 with a previous CO(17-16) line detection. By computing the CO SLEDs normalised to the CO(6-5) line and FIR luminosities for J2310, J1319, and J1149, we conclude that different gas heating mechanisms (X-ray radiation and/or shocks) may explain the different CO luminosities observed in these z ∼ 6 quasar. Future ${\rm J_{\rm up}}$ >8 CO observations will be crucial to understand the processes responsible for molecular gas excitation in luminous high-z quasars.


1998 ◽  
Vol 188 ◽  
pp. 396-397
Author(s):  
D. Hannikainen ◽  
Ph. Durouchoux

The transient X-ray source GRS 1915+105 was discovered in August 1992 with the GRANAT/WATCH all-sky monitor (Castro-Tirado et al. 1994). Subsequent VLA observations from March through April 1994 led to the discovery of apparent superluminal motion in a pair of radio condensations moving away from the compact radio core (Mirabel & Rodriguez 1994). These jet-like features are interpreted as a bipolar outflow with bulk velocity ~ 0.9c. Although no optical counterpart has been observed, due to the heavy extinction in the Galactic plane, and therefore not enabling measurements of the mass of the compact object, the hard X-ray spectrum and high luminosity (~ 1039 erg s−1), extreme variability in the X-ray light curve and the relativistic jets make GRS 1915+105 a strong black hole candidate.


1997 ◽  
Vol 159 ◽  
pp. 252-253
Author(s):  
Youjun Lu ◽  
Tinggui Wang

According to photoionization calculations, the broad emission-line (BEL) spectrum depends not only on the physical conditions of line-emitting gas, but also on the spectral shape of incident ionizing continuum, especially from the UV to X-ray. Analysis of emission-line spectra and their correlations with the continuum, therefore, provide a way of probing the anisotropy of ionizing continuum on the BLR scale, which is predicted by current models. Previous works have concentrated on explaining the Baldwin effect, an inverse correlation between equivalent width and continuum luminosity. In this contribution, we present the results of an analysis of 75 AGNs which have well-determined soft X-ray spectral parameters from ROSAT and UV line and continuum measurements.


Sign in / Sign up

Export Citation Format

Share Document