scholarly journals Radio continuum emission of the Milky Way and nearby galaxies

1985 ◽  
Vol 106 ◽  
pp. 239-244 ◽  
Author(s):  
Rainer Beck ◽  
Wolfgang Reich

The radio continuum emission of the Milky Way and nearby galaxies can be decomposed into a central region, a clumpy “thin disk”, concentrated in the spiral arms, and a smooth “thick disk” (or flattened “halo”). The emissivity ratio of the two disks seems to be related to the magnetic field properties: Galaxies with strong radio spiral arms reveal a highly ordered field following the arm direction, while galaxies with diffuse disks contain a less ordered, smoothly distributed field. The degree of uniformity of the field seems to correlate with the total optical luminosity. The average magnetic field in the Milky Way is weak and turbulent compared to most of the nearby galaxies observed so far.

2019 ◽  
Vol 632 ◽  
pp. A13 ◽  
Author(s):  
Y. Stein ◽  
R.-J. Dettmar ◽  
M. Weżgowiec ◽  
J. Irwin ◽  
R. Beck ◽  
...  

Context. The radio continuum halos of edge-on spiral galaxies have diverse morphologies, with different magnetic field properties and cosmic ray (CR) transport processes into the halo. Aims. Using the Continuum HAloes in Nearby Galaxies – an EVLA Survey (CHANG-ES) radio continuum data from the Karl G. Jansky Very Large Array (VLA) in two frequency bands, 6 GHz (C-band) and 1.5 GHz (L-band), we analyzed the radio properties, including polarization and the transport processes of the CR electrons (CREs), in the edge-on spiral galaxy NGC 4013. Supplementary LOw-Frequency ARray (LOFAR) data at 150 MHz are used to study the low-frequency properties of this galaxy and X-ray data are used to investigate the central region. Methods. We determined the total radio flux densities (central source, disk, halo and total) as well as the radio scale heights of the radio continuum emission at both CHANG-ES frequencies and at the LOFAR frequency. We derived the magnetic field orientation from CHANG-ES polarization data and rotation measure synthesis (RM synthesis). Furthermore, we used the revised equipartition formula to calculate the magnetic field strength. Lastly, we modeled the processes of CR transport into the halo with the 1D SPINNAKER model. Results. The central point source dominates the radio continuum emission with a mean of ∼35% of the total flux density emerging from the central source in both CHANG-ES bands. Complementary X-ray data from Chandra show one dominant point source in the central part. The XMM-Newton spectrum shows hard X-rays, but no clear AGN classification is possible at this time. The radio continuum halo of NGC 4013 in C-band is rather small, while the low-frequency LOFAR data reveal a large halo. The scale height analysis shows that Gaussian fits, with halo scale heights of 1.2 kpc in C-band, 2.0 kpc in L-band, and 3.1 kpc at 150 MHz, better represent the intensity profiles than do exponential fits. The frequency dependence gives clear preference to diffusive CRE transport. The radio halo of NGC 4013 is relatively faint and contributes only 40% and 56% of the total flux density in C-band and L-band, respectively. This is less than in galaxies with wind-driven halos. While the SPINNAKER models of the radio profiles show that advection with a launching velocity of ∼20 km s−1 (increasing to ∼50 km s−1 at 4 kpc height) fits the data equally well or slightly better, diffusion is the dominating transport process up to heights of 1–2 kpc. The polarization data reveal plane-parallel, regular magnetic fields within the entire disk and vertical halo components indicating the presence of an axisymmetric field having a radial component pointing outwards. The mean magnetic field strength of the disk of NGC 4013 of 6.6 μG is rather small. Large-scale vertical fields are observed in the halo out to heights of about 6 kpc. Conclusions. The interaction and the low star formation rate (SFR) across the disk of NGC 4013 probably influence the appearance of its radio continuum halo and are correlated with the low total magnetic field strength. Several observable quantities give consistent evidence that the CR transport in the halo of NGC 4013 is diffusive: the frequency dependence of the synchrotron scale height, the disk/halo flux density ratio, the vertical profile of the synchrotron spectral index, the small propagation speed measured modeled with SPINNAKER, and the low temperature of the X-ray emitting hot gas.


2020 ◽  
Vol 633 ◽  
pp. A144 ◽  
Author(s):  
B. Vollmer ◽  
M. Soida ◽  
R. Beck ◽  
M. Powalka

One of the tightest correlations in astronomy is the relation between the integrated radio continuum and the far-infrared (FIR) emission. Within nearby galaxies, variations in the radio–FIR correlation have been observed, mainly because the cosmic ray electrons migrate before they lose their energy via synchrotron emission or escape. The major cosmic-ray electron transport mechanisms within the plane of galactic disks are diffusion, and streaming. A predicted radio continuum map can be obtained by convolving the map of cosmic-ray electron sources, represented by that of the star formation, with adaptive Gaussian and exponential kernels. The ratio between the smoothing lengthscales at 6 cm and 20 cm can be used to determine, between diffusion and streaming, which is the dominant transport mechanism. The dependence of the smoothing lengthscale on the star formation rate bears information on the dependence of the magnetic field strength, or the ratio between the ordered and turbulent magnetic field strengths on star formation. Star formation maps of eight rather face-on local and Virgo cluster spiral galaxies were constructed from Spitzer and Herschel infrared and GALEX UV observations. These maps were convolved with adaptive Gaussian and exponential smoothing kernels to obtain model radio continuum emission maps. It was found that in asymmetric ridges of polarized radio continuum emission, the total power emission is enhanced with respect to the star formation rate. At a characteristic star formation rate of $ \dot{\Sigma}_*=8 \times 10^{-3}\,M_{\odot} $ yr−1 kpc−2, the typical lengthscale for the transport of cosmic-ray electrons is l = 0.9 ± 0.3 kpc at 6 cm, and l = 1.8 ± 0.5 kpc at 20 cm. Perturbed spiral galaxies tend to have smaller lengthscales. This is a natural consequence of the enhancement of the magnetic field caused by the interaction. The discrimination between the two cosmic-ray electron transport mechanisms, diffusion, and streaming is based on (i) the convolution kernel (Gaussian or exponential); (ii) the dependence of the smoothing kernel on the local magnetic field, and thus on the local star formation rate; (iii) the ratio between the two smoothing lengthscales via the frequency dependence of the smoothing kernel, and (iv) the dependence of the smoothing kernel on the ratio between the ordered and the turbulent magnetic field. Based on our empirical results, methods (i) and (ii) cannot be used to determine the cosmic ray transport mechanism. Important asymmetric large-scale residuals and a local dependence of the smoothing length on Bord/Bturb are most probably responsible for the failure of methods (i) and (ii), respectively. On the other hand, the classifications based on l6 cm/l20 cm (method iii) and Bord/Bturb (method iv), are well consistent and complementary. We argue that in the six Virgo spiral galaxies, the turbulent magnetic field is globally enhanced in the disk. Therefore, the regions where the magnetic field is independent of the star formation rate are more common. In addition, Bord/Bturb decreases, leading to a diffusion lengthscale that is smaller than the streaming lengthscale. Therefore, cosmic ray electron streaming dominates in most of the Virgo spiral galaxies.


2011 ◽  
Vol 7 (S284) ◽  
pp. 400-403
Author(s):  
Fatemeh S. Tabatabaei ◽  
Eva Schinnerer ◽  
Eric Murphy ◽  
Rainer Beck ◽  
Annie Hughes ◽  
...  

AbstractWe investigate the correlation between the far-infrared (FIR) and radio continuum emission from NGC6946 on spatial scales between 0.9 and 17 kpc. We use the Herschel PACS (70, 100, 160μm) and SPIRE (250μm) data from the KINGFISH project. Separating the free-free and synchrotron components of the radio continuum emission, we find that FIR is better correlated with the free-free than the synchrotron emission. Compared to a similar study in M33 and M31, we find that the scale dependence of the synchrotron–FIR correlation in NGC6946 is more similar to M31 than M33. The scale dependence of the synchrotron–FIR correlation can be explained by the turbulent-to-ordered magnetic field ratio or, equivalently, the diffusion length of the cosmic ray electrons in these galaxies.


2010 ◽  
Vol 6 (S274) ◽  
pp. 325-332 ◽  
Author(s):  
Rainer Beck

AbstractThe strength and structure of cosmic magnetic fields is best studied by observations of radio continuum emission, its polarization and its Faraday rotation. Fields with a well-ordered spiral structure exist in many types of galaxies. Total field strengths in spiral arms and bars are 20–30 μG and dynamically important. Strong fields in central regions can drive gas inflows towards an active nucleus. The strongest regular fields (10–15 μG) are found in interarm regions, sometimes forming “magnetic spiral arms” between the optical arms. The typical degree of polarization is a few % in spiral arms, but high (up to 50%) in interarm regions. The detailed field structures suggest interaction with gas flows. Faraday rotation measures of the polarization vectors reveals large-scale patterns in several spiral galaxies which are regarded as signatures of large-scale (coherent) fields generated by dynamos. – Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission traces low-energy cosmic ray electrons which can propagate further away from their origin. LOFAR (30–240 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in galaxy clusters and in the Milky Way. Polarization at higher frequencies (1–10 GHz), to be observed with the EVLA, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of galaxies in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP and the SKA are dedicated to measure magnetic fields in distant intervening galaxies and clusters, and will be used to model the overall structure and strength of the magnetic field in the Milky Way.


2020 ◽  
Vol 642 ◽  
pp. A201 ◽  
Author(s):  
S. Reissl ◽  
J. M. Stil ◽  
E. Chen ◽  
R. G. Treß ◽  
M. C. Sormani ◽  
...  

Context. The Faraday rotation measure (RM) is often used to study the magnetic field strength and orientation within the ionized medium of the Milky Way. Recent observations indicate an RM magnitude in the spiral arms that exceeds the commonly assumed range. This raises the question of how and under what conditions spiral arms create such strong Faraday rotation. Aims. We investigate the effect of spiral arms on Galactic Faraday rotation through shock compression of the interstellar medium. It has recently been suggested that the Sagittarius spiral arm creates a strong peak in Faraday rotation where the line of sight is tangent to the arm, and that enhanced Faraday rotation follows along side lines which intersect the arm. Here our aim is to understand the physical conditions that may give rise to this effect and the role of viewing geometry. Methods. We apply a magnetohydrodynamic simulation of the multi-phase interstellar medium in a Milky Way-type spiral galaxy disk in combination with radiative transfer in order to evaluate different tracers of spiral arm structures. For observers embedded in the disk, dust intensity, synchrotron emission, and the kinematics of molecular gas observations are derived to identify which spiral arm tangents are observable. Faraday rotation measures are calculated through the disk and evaluated in the context of different observer positions. The observer’s perspectives are related to the parameters of the local bubbles surrounding the observer and their contribution to the total Faraday rotation measure along the line of sight. Results. We reproduce a scattering of tangent points for the different tracers of about 6° per spiral arm similar to the Milky Way. For the RM, the model shows that compression of the interstellar medium and associated amplification of the magnetic field in spiral arms enhances Faraday rotation by a few hundred rad m−2 in addition to the mean contribution of the disk. The arm–interarm contrast in Faraday rotation per unit distance along the line of sight is approximately ~10 in the inner Galaxy, fading to ~2 in the outer Galaxy in tandem with the waning contrast of other tracers of spiral arms. We identify a shark fin pattern in the RM Milky Way observations and in the synthetic data that is characteristic for a galaxy with spiral arms.


1994 ◽  
Vol 140 ◽  
pp. 363-365 ◽  
Author(s):  
M. Krause ◽  
G. Golla ◽  
K.-I. Morita ◽  
R. Wielebinski

The late-type edge-on spiral galaxy NGC 4631 is known for its high star formation rate and extended radio halo with a uniform magnetic field component ordered predominantly perpendicular to the plane of the galaxy in the inner 6 kpc (assuming a distance of 7.5 Mpc, 1′ = 2.2 kpc) (Hummel et al. 1988; Golla, Ph.D., in preparation). The strongest radio continuum source of NGC 4631 is located at the eastern edge of the central region near a giant HII region complex CM67 (Crillon and Monnet 1969). The magnetic field orientation going out from the central region and especially from the region CM67 as well as the prominent north eastern low frequency radio spur (cf. Hummel et al. 1991) indicate a close connection between the synchrotron emission of the radio halo of NGC 4631 and star forming regions/CM67 in the disk (Golla and Hummel, in preparation). Probably cosmic rays from star forming regions in the disk propagate along the magnetic field Unes into the halo.


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 42 ◽  
Author(s):  
Judith Irwin ◽  
Ancor Damas-Segovia ◽  
Marita Krause ◽  
Arpad Miskolczi ◽  
Jiangtao Li ◽  
...  

The CHANG-ES (Continuum Halos in Nearby Galaxies) survey of 35 nearby edge-on galaxies is revealing new and sometimes unexpected and startling results in their radio continuum emission. The observations were in wide bandwidths centred at 1.6 and 6.0 GHz. Unique to this survey is full polarization data showing magnetic field structures in unprecedented detail, resolution and sensitivity for such a large sample. A wide range of new results are reported here, some never before seen in any galaxy. We see circular polarization and variability in active galactic nuclei (AGNs), in-disk discrete features, disk-halo structures sometimes only seen in polarization, and broad-scale halos with reversing magnetic fields, among others. This paper summarizes some of the CHANG-ES results seen thus far.


1996 ◽  
Vol 171 ◽  
pp. 429-429
Author(s):  
K. Otmianowska-Mazur ◽  
S. von Linden ◽  
H. Lesch

Recent observations of radio polarization from nearby galaxies show that the large-scale galactic magnetic field is aligned with spiral arms and bars and the magnetic field vectors in the interarm regions possess a spiral structure which has the same pitch angle as that in spiral arms. Our present project is going to address the following questions: What is the structure and evolution of the large-scale galactic magnetic field under the influence of spiral and bar structure in a galactic disk? To which extent could the resulting magnetic field account for the observed spiral pattern of magnetic field in nearby galaxies? The model is based on the particle-particle numerical scheme (SPH) involving two components: stars and molecular gas. The magnetic field is connected with the latter one. The magnetic field computations were performed first in two dimensions for 100 velocity fields: from 107 to 109 yrs. The resultant magnetic field is strongly affected by spiral arms, however at the given evolutionary stage its structure is different from the velocity field at the same time. The magnetic pitch angle distribution shows that the magnetic field “remembers” all the past velocity steps. The magnetic pitch angle distribution resulting after beam smoothing could quite well fit observations. The present model with fully 3D velocity field of interstellar gas should clear the problem if the magnetic field under the realistic velocity evolution of gas could explain the observed structure of large-scale magnetic field with constant pitch angle in the whole disk.


2004 ◽  
Vol 217 ◽  
pp. 382-383
Author(s):  
A. Fletcher ◽  
R. Beck ◽  
J. Harnett ◽  
M. Ehle ◽  
S. Ryder

The λ6 cm radio continuum emission from the barred galaxy NGC 2442 displays several unusual features that are probably due to the interaction of the galaxy with the intergalactic medium.


Sign in / Sign up

Export Citation Format

Share Document