scholarly journals The resolved radio–FIR correlation in nearby galaxies with Herschel and Spitzer

2011 ◽  
Vol 7 (S284) ◽  
pp. 400-403
Author(s):  
Fatemeh S. Tabatabaei ◽  
Eva Schinnerer ◽  
Eric Murphy ◽  
Rainer Beck ◽  
Annie Hughes ◽  
...  

AbstractWe investigate the correlation between the far-infrared (FIR) and radio continuum emission from NGC6946 on spatial scales between 0.9 and 17 kpc. We use the Herschel PACS (70, 100, 160μm) and SPIRE (250μm) data from the KINGFISH project. Separating the free-free and synchrotron components of the radio continuum emission, we find that FIR is better correlated with the free-free than the synchrotron emission. Compared to a similar study in M33 and M31, we find that the scale dependence of the synchrotron–FIR correlation in NGC6946 is more similar to M31 than M33. The scale dependence of the synchrotron–FIR correlation can be explained by the turbulent-to-ordered magnetic field ratio or, equivalently, the diffusion length of the cosmic ray electrons in these galaxies.

2018 ◽  
Vol 615 ◽  
pp. A98 ◽  
Author(s):  
D. D. Mulcahy ◽  
A. Horneffer ◽  
R. Beck ◽  
M. Krause ◽  
P. Schmidt ◽  
...  

Context. Cosmic rays and magnetic fields play an important role for the formation and dynamics of gaseous halos of galaxies. Aims. Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. Spectral information can be used to test models of CRE propagation. Free–free absorption by ionized gas at low frequencies allows us to investigate the properties of the warm ionized medium in the disk. Methods. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129–163 MHz with the LOw Frequency ARray (LOFAR) and at 13–18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1–2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. Results. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free–free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 ± 2 μG. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 ± 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation. Conclusions. Free–free absorption is probably important at and below about 150 MHz in the disks of edge-on galaxies. To reliably separate the thermal and nonthermal emission components, to investigate spectral steepening due to CRE energy losses, and to measure magnetic field strengths in the disk and halo, wide frequency coverage and high spatial resolution are indispensable.


2020 ◽  
Vol 633 ◽  
pp. A144 ◽  
Author(s):  
B. Vollmer ◽  
M. Soida ◽  
R. Beck ◽  
M. Powalka

One of the tightest correlations in astronomy is the relation between the integrated radio continuum and the far-infrared (FIR) emission. Within nearby galaxies, variations in the radio–FIR correlation have been observed, mainly because the cosmic ray electrons migrate before they lose their energy via synchrotron emission or escape. The major cosmic-ray electron transport mechanisms within the plane of galactic disks are diffusion, and streaming. A predicted radio continuum map can be obtained by convolving the map of cosmic-ray electron sources, represented by that of the star formation, with adaptive Gaussian and exponential kernels. The ratio between the smoothing lengthscales at 6 cm and 20 cm can be used to determine, between diffusion and streaming, which is the dominant transport mechanism. The dependence of the smoothing lengthscale on the star formation rate bears information on the dependence of the magnetic field strength, or the ratio between the ordered and turbulent magnetic field strengths on star formation. Star formation maps of eight rather face-on local and Virgo cluster spiral galaxies were constructed from Spitzer and Herschel infrared and GALEX UV observations. These maps were convolved with adaptive Gaussian and exponential smoothing kernels to obtain model radio continuum emission maps. It was found that in asymmetric ridges of polarized radio continuum emission, the total power emission is enhanced with respect to the star formation rate. At a characteristic star formation rate of $ \dot{\Sigma}_*=8 \times 10^{-3}\,M_{\odot} $ yr−1 kpc−2, the typical lengthscale for the transport of cosmic-ray electrons is l = 0.9 ± 0.3 kpc at 6 cm, and l = 1.8 ± 0.5 kpc at 20 cm. Perturbed spiral galaxies tend to have smaller lengthscales. This is a natural consequence of the enhancement of the magnetic field caused by the interaction. The discrimination between the two cosmic-ray electron transport mechanisms, diffusion, and streaming is based on (i) the convolution kernel (Gaussian or exponential); (ii) the dependence of the smoothing kernel on the local magnetic field, and thus on the local star formation rate; (iii) the ratio between the two smoothing lengthscales via the frequency dependence of the smoothing kernel, and (iv) the dependence of the smoothing kernel on the ratio between the ordered and the turbulent magnetic field. Based on our empirical results, methods (i) and (ii) cannot be used to determine the cosmic ray transport mechanism. Important asymmetric large-scale residuals and a local dependence of the smoothing length on Bord/Bturb are most probably responsible for the failure of methods (i) and (ii), respectively. On the other hand, the classifications based on l6 cm/l20 cm (method iii) and Bord/Bturb (method iv), are well consistent and complementary. We argue that in the six Virgo spiral galaxies, the turbulent magnetic field is globally enhanced in the disk. Therefore, the regions where the magnetic field is independent of the star formation rate are more common. In addition, Bord/Bturb decreases, leading to a diffusion lengthscale that is smaller than the streaming lengthscale. Therefore, cosmic ray electron streaming dominates in most of the Virgo spiral galaxies.


2019 ◽  
Vol 15 (S341) ◽  
pp. 177-186
Author(s):  
Eric J. Murphy

AbstractRadio continuum emission from galaxies is powered by a combination of distinct physical processes, each providing unique diagnostic information. Over frequencies spanning ∼ 1–120 GHz, radio spectra of star-forming galaxies are primarily comprised of: (1) non-thermal synchrotron emission powered by accelerated cosmic-ray electrons/positrons; (2) free-free emission from young massive star-forming (H ii) regions; (3) anomalous microwave emission, which is a dominant, but completely unconstrained, foreground in cosmic microwave background experiments; and (4) cold, thermal dust emission that accounts for most of the dust and total mass content in the interstellar medium in galaxies. In this proceeding, we discuss these key energetic processes that contribute to the radio emission from star-forming galaxies, with an emphasis on frequencies ≳30 GHz, where current investigations of star formation within nearby galaxies show that the free-free emission begins to dominate over non-thermal synchrotron emission. We also discuss how planned radio facilities that will access these frequencies, such as a next-generation Very Large Array (ngVLA), will be transformative to our understanding of the star formation process in galaxies.


1981 ◽  
Vol 94 ◽  
pp. 225-226
Author(s):  
Rainer Beck ◽  
Ulrich Klein

High resolution observations of the radio continuum emission from nearby galaxies at several frequencies provide information about the cosmic ray electrons. Optimum results are expected by combining low-frequency synthesis observations with high-frequency single dish data, e.g. Westerbork 610 MHz / Effelsberg 10.7 GHz (1′ resolution) or Cambridge 150 MHz / Effelsberg 2.7 GHz (4′ resolution). Maps of 15 nearby spiral galaxies at 10.7 GHz have been made with the Effelsberg 100-m telescope. Maps of M31 and M33 are available at 2.7 and 4.8 GHz.


2020 ◽  
Vol 496 (3) ◽  
pp. 2663-2672 ◽  
Author(s):  
Martin Vollmann ◽  
Volker Heesen ◽  
Timothy W. Shimwell ◽  
Martin J Hardcastle ◽  
Marcus Brüggen ◽  
...  

ABSTRACT Dwarf galaxies are dark matter (DM) dominated and therefore promising targets for the search for weakly interacting massive particles (WIMPs), which are well-known candidates for DM. The annihilation of WIMPs produces ultrarelativistic cosmic ray electrons and positrons that emit synchrotron radiation in the presence of magnetic fields. For typical magnetic field strengths (few μG) and $\mathcal {O}$(GeV–TeV) WIMP masses, this emission peaks at hundreds of MHz. Here, we use the non-detection of 150-MHz radio continuum emission from the dwarf spheroidal galaxy Canes Venatici I with the Low-Frequency Array to derive constraints on the annihilation cross-section of WIMPs into primary electron–positron and other fundamental particle–antiparticle pairs. Our main underlying assumption is that the transport of the cosmic rays can be described by the diffusion approximation, thus requiring a non-zero magnetic field strength with small-scale structure. In particular, by adopting magnetic field strengths of $\mathcal {O}(1\, \mu$G) and diffusion coefficients $\sim \!10^{27}~\rm cm^2\, s^{-1}$, we obtain limits that are comparable with those set by the Fermi Large Area Telescope using gamma-ray observations of this particular galaxy. Assuming s-wave annihilation and WIMPs making up 100 per cent of the DM density, our benchmark limits exclude several thermal WIMP realizations in the [2, 20]-GeV mass range. We caution, however, that our limits for the cross-section are subject to enormous uncertainties that we also quantitatively assess. In particular, variations on the propagation parameters or on the DM halo can shift our limits up by several orders of magnitude (in the pessimistic scenario).


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 42 ◽  
Author(s):  
Judith Irwin ◽  
Ancor Damas-Segovia ◽  
Marita Krause ◽  
Arpad Miskolczi ◽  
Jiangtao Li ◽  
...  

The CHANG-ES (Continuum Halos in Nearby Galaxies) survey of 35 nearby edge-on galaxies is revealing new and sometimes unexpected and startling results in their radio continuum emission. The observations were in wide bandwidths centred at 1.6 and 6.0 GHz. Unique to this survey is full polarization data showing magnetic field structures in unprecedented detail, resolution and sensitivity for such a large sample. A wide range of new results are reported here, some never before seen in any galaxy. We see circular polarization and variability in active galactic nuclei (AGNs), in-disk discrete features, disk-halo structures sometimes only seen in polarization, and broad-scale halos with reversing magnetic fields, among others. This paper summarizes some of the CHANG-ES results seen thus far.


1990 ◽  
Vol 140 ◽  
pp. 61-61
Author(s):  
A. Broadbent ◽  
C.G.T. Haslam ◽  
J.L. Osborne

A technique for separating the radio continuum emission of the Galaxy into its thermal and nonthermal components has been recently developed by Broadbent, Haslam and Osborne (1989). In this the thermal component is identified by its detailed correlation with the 60 μm infrared emission as observed by IRAS after the subtraction of zodiacal light and the HI-associated dust emission. This technique has been applied to the 408 MHz allsky survey of Haslam et al. (1982). A model of the distribution of synchrotron emissivity in the galactic disk has then been derived including information on the other tracers of spiral structure (HI, CO and giant HII regions) in order to account in detail for the observed nonthermal emission. The spiral arm pattern has two pairs of arms emanating from a central ellipse. The function describing the underlying variation of synchrotron emissivity with galactocentric radius is zero at the centre, rises to a sharp peak and then falls off slowly beyond 3 kpc. Using a scale length of the variation of cosmic ray electron density derived from γ-ray observations, we find that the scale length of the magnetic field variation must be as long as 22 kpc. This agrees with the scale length derived assuming equipartition between energy densities of magnetic field and cosmic rays. The variation of emissivity with height above the plane deduced by Phillipps et al. (1981) when included in our model gives good fits to the observed cuts across the plane. We have modelled the variation of the galactic magnetic field across a spiral arm as a gaussian. In order to fit the peaks in the galactic plane profile σ=0.2 kpc and a maximum compression of the field in the arm of 3.5:1 is required. These parameters are compatible with the results of N-body simulations of spiral arm formation which treat gas clouds as the unit particles. A detailed description of the model is about to be submitted for publication.


1985 ◽  
Vol 106 ◽  
pp. 239-244 ◽  
Author(s):  
Rainer Beck ◽  
Wolfgang Reich

The radio continuum emission of the Milky Way and nearby galaxies can be decomposed into a central region, a clumpy “thin disk”, concentrated in the spiral arms, and a smooth “thick disk” (or flattened “halo”). The emissivity ratio of the two disks seems to be related to the magnetic field properties: Galaxies with strong radio spiral arms reveal a highly ordered field following the arm direction, while galaxies with diffuse disks contain a less ordered, smoothly distributed field. The degree of uniformity of the field seems to correlate with the total optical luminosity. The average magnetic field in the Milky Way is weak and turbulent compared to most of the nearby galaxies observed so far.


1990 ◽  
Vol 140 ◽  
pp. 237-238
Author(s):  
M. D. Bicay ◽  
G. Helou

The remarkably tight global correlation between integrated far-infrared and radio continuum emission from spiral galaxies has recently stimulated interest in determining whether the relation holds spatially within galaxies (Wainscoat et al. 1987; Beck and Golla 1988; Bicay et al. 1989, hereafter Paper I). We report here on a detailed comparison of the distribution of 60μm infrared and 20cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal infrared and predominantly nonthermal radio maps are found to be spatially coincident on scales <0.3h−1 kpc in nearby galaxies. Superimposed on this broad correlation, we observe in the disks of most sample galaxies a slow decrease in the 60μm-to-20cm ratio Q60 with increasing radius. Values of Q60 within the central regions are often enhanced by a factor of 3 or more compared to the outer disks, whereas the corresponding enhancement in radio surface brightness is greater by at least an order of magnitude. The radial gradient in Q60 is most easily identified in nearby, face-on galaxies (e.g. NGC 5236, NGC 6946) due to the limited IRAS angular resolution. However, the gradient is also observed along the major axis of highly inclined systems (e.g. NGC 55).


2020 ◽  
Vol 494 (2) ◽  
pp. 1531-1538
Author(s):  
A Moranchel-Basurto ◽  
P F Velázquez ◽  
G Ares de Parga ◽  
E M Reynoso ◽  
E M Schneiter ◽  
...  

ABSTRACT We have performed 3D magnetohydrodynamics (MHD) numerical simulations with the aim of exploring the scenario in which the initial mass distribution of a supernova (SN) explosion is anisotropic. The purpose is to analyse if this scenario can also explain the radio-continuum emission and the expansion observed in young supernova remnants (SNRs). To study the expansion, synthetic polarized synchrotron emission maps were computed from the MHD simulations. We found a good agreement (under a number of assumptions) between this expansion study and previous observational results applied to Tycho’s SNR, which represents a good example of asymmetric young SNRs. Additionally, both the observed morphology and the brightness distribution are qualitatively reproduced.


Sign in / Sign up

Export Citation Format

Share Document