XV.—The Effect of Certain Factors on the Formation of Root Nodules on Pea Plants in Aseptic Culture

1949 ◽  
Vol 63 (3) ◽  
pp. 219-229 ◽  
Author(s):  
Moira P. McGonagle

The experiments described in the present paper were undertaken as the outcome of an investigation into the possibility of securing nodule formation on leguminous roots cultured separately from the shoots. During that investigation it soon became clear that experiments on whole plants were necessary, in order to test the effect, on the nodulation of the normal whole plant, of certain conditions under which nodulation of root cultures was being attempted. It is thought that these observations on whole plants, though ancillary to the main investigation (which is still in progress), are of sufficient interest to be published separately. The observations are concerned with the effect of the following conditions or treatments on nodule development in a particular variety of pea:—(a) Depriving the plant of light;(b) the presence of sucrose in the rooting medium;(c) the presence of nitrate in the rooting medium; and(d) the presence of certain accessory growth substances, viz. aneurin and nicotinic acid, in the rooting medium.

1984 ◽  
Vol 35 (2) ◽  
pp. 149 ◽  
Author(s):  
DF Herridge ◽  
RJ Roughley ◽  
J Brockwell

The symbiosis of the root-nodules of Bragg soybean [Glycine max (L.) Merrill] and the relative dependence of the plants on symbiotic and soil sources of N were evaluated in an experiment conducted on a vertisol which was high in organic- and mineral-N, free of Rhizobium japonicum, and where poor nodulation was characteristic of inoculated, new sowings. Effective inoculant containing R. japonicum strain CB 1809 was sprayed into the seed bed at three rates of application (10-fold intervals). Increasing rates of inoculant led to greater numbers of rhizobia in the rhizosphere and in the soil, and to improved nodulation. Uninoculated plants did not nodulate. High soil NO-3 (30 �g N/g, top 30 cm) did not prevent prompt, abundant colonization of rhizospheres by the bacteria from the inoculant, but nodule initiation was delayed and nodule development was retarded until 42 days after sowing. There was an acceleration in nodule formation and development between 42 and 62 days which coincided with a depletion of NO-3 from the top 60 cm of the soil profile. Nodulated and unnodulated soybeans took up NO-3 at similar times and rates to a soil depth of 90 cm; only unnodulated plants utilized soil NO-3 below 90 cm. Vacuum-extracted stem (xylem) exudate was sampled from plants throughout growth and analysed for nitrogenous solutes. The proportion of ureide-N relative to total-solutes-N in xylem sap was used as an index of symbiotic N2-fixation. The initial increase in concentrations of ureides coincided with the period of accelerated nodule formation and development between 42 and 62 days. Thereafter, there was a progressive increase in ureide concentrations in nodulated plants, and the levels were related to rate of inoculation, extent of nodulation, and to the decline in concentrations of soil NO-3. Ureide concentrations in unnodulated plants remained low throughout. The quantities of NO-3-N and �-NH2- N in xylem sap were not related to nodulation. The differences between treatments in terms of whole-plant N and grain N were less than predicted from the symbiotic parameters. This indicated that soybeans compensated for symbiotic deficiencies by more efficient exploitation of soil N and/or by more efficient redistribution of vegetative N into grain N, and that nodulation and soil NO-3 were interactive and complementary in meeting the N requirements of the crop.


2013 ◽  
Vol 26 (10) ◽  
pp. 1232-1238 ◽  
Author(s):  
Kateřina Podlešáková ◽  
Joel Fardoux ◽  
Delphine Patrel ◽  
Katia Bonaldi ◽  
Ondřej Novák ◽  
...  

Cytokinins (CK) play an important role in the formation of nitrogen-fixing root nodules. It has been known for years that rhizobia secrete CK in the extracellular medium but whether they play a role in nodule formation is not known. We have examined this question using the photosynthetic Bradyrhizobium sp. strain ORS285 which is able to nodulate Aeschynomene afraspera and A. indica using a Nod-dependent or Nod-independent symbiotic process, respectively. CK profiling showed that the most abundant CK secreted by Bradyrhizobium sp. strain ORS285 are the 2MeS (2-methylthiol) derivatives of trans-zeatin and isopentenyladenine. In their pure form, these CK can activate legume CK receptors in vitro, and their exogenous addition induced nodule-like structures on host plants. Deletion of the miaA gene showed that transfer RNA degradation is the source of CK production in Bradyrhizobium sp. strain ORS285. In nodulation studies performed with A. indica and A. afraspera, the miaA mutant had a 1-day delay in nodulation and nitrogen fixation. Moreover, A. indica plants formed considerably smaller but more abundant nodules when inoculated with the miaA mutant. These data show that CK produced by Bradyrhizobium sp. strain ORS285 are not the key signal triggering nodule formation during the Nod-independent symbiosis but they contribute positively to nodule development in Aeschynomene plants.


2020 ◽  
Vol 118 (2) ◽  
pp. e2018015118
Author(s):  
Barney A. Geddes ◽  
Jason V. S. Kearsley ◽  
Jiarui Huang ◽  
Maryam Zamani ◽  
Zahed Muhammed ◽  
...  

Reduction of N2 gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N2 fixation once inside the plant cells. Many bacterial genes involved in the rhizobia–legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, Sinorhizobium (Ensifer) meliloti, using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N2-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N2 fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete nod, nif, and fix modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium’s competitiveness for nodulation and the effectiveness of particular rhizobia–plant symbioses.


Author(s):  
Swarup Roy Choudhury ◽  
Sarah M. Johns ◽  
Sona Pandey

Legumes develop root nodules that harbour endosymbiotic bacteria, rhizobia. These rhizobia convert nitrogen to ammonia by biological nitrogen fixation. A thorough understanding of the biological nitrogen fixation in legumes and its regulation is key to develop sustainable agriculture. It is well known that plant hormones affect nodule formation; however, most studies are limited to model legumes due to their suitability for in vitro, plate-based assays. Specifically, it is almost impossible to measure the effects of exogenous hormones or other additives during nodule development in crop legumes such as soybean as they have huge root system in soil. To circumvent this issue, the present research develops suitable media and growth conditions for efficient nodule development under in vitro, soil free conditions in an important legume crop, soybean. Moreover, we also evaluate the effects of all major phytohormones during soybean nodulation under identical conditions. This versatile, inexpensive, scalable and simple protocol provides several advantages over previously established methods. It is extremely time-and resource-efficient, does not require special training or equipment, and produces highly reproducible results. The approach is expandable to other large legumes as well as for other exogenous additives.


1978 ◽  
Vol 56 (11) ◽  
pp. 1357-1364 ◽  
Author(s):  
John G. Torrey ◽  
Dale Callaham

Young seedlings of Myrica gale L. grown in water culture were inoculated with a nodule suspension containing the effective actinomycete which induced root nodule formation. Nodule development was followed from initiation to nodule lobe formation and nodule root development using living materials and fixed nodules sectioned for light microscopy. After root hair infection and prenodule formation, three stages were observed: nodule lobe formation, a transition or arrested state, and nodule root development. The primary nodule lobe meristem originates endogenously and its formation involves pericycle, endodermis, and cortical cell derivatives. The lobe develops slowly to about 2 mm in length while the cortical cells are invaded by the actinomycete endophyte. After a period of arrest of variable duration, from a few days to several weeks, the nodule lobe meristem begins altered development, forming the elongate nodule root which undergoes slow but continuous growth to about 3- to 4-cm final length. New nodule lobe primordia are initiated endogenously at the base of existing nodules lobes, ultimately forming a cluster of nodule roots. Each nodule root, which elongates at about 0.1–1.0 mm per day, has a terminal apical meristem with reduced root cap formation and produces a modified root structure possessing an elaborate cortical intercellular space system and a reduced central cylinder. Nodule root growth is distinctive in that it shows strong negative geotropism. The endophyte is restricted to cortical cells of the nodule lobe and is totally absent from tissues of the nodule root. A probable role for nodule roots is to facilitate gas diffusion to the nitrogen-fixing endophyte site in the nodule lobe when nodules occur under conditions of low oxygen tension.


2008 ◽  
Vol 35 (8) ◽  
pp. 651 ◽  
Author(s):  
Ulrike Mathesius

Root nodules are formed as a result of an orchestrated exchange of chemical signals between symbiotic nitrogen fixing bacteria and certain plants. In plants that form nodules in symbiosis with actinorhizal bacteria, nodules are derived from lateral roots. In most legumes, nodules are formed de novo from pericycle and cortical cells that are re-stimulated for division and differentiation by rhizobia. The ability of plants to nodulate has only evolved recently and it has, therefore, been suggested that nodule development is likely to have co-opted existing mechanisms for development and differentiation from lateral root formation. Auxin is an important regulator of cell division and differentiation, and changes in auxin accumulation and transport are essential for lateral root development. There is growing evidence that rhizobia alter the root auxin balance as a prerequisite for nodule formation, and that nodule numbers are regulated by shoot-to-root auxin transport. Whereas auxin requirements appear to be similar for lateral root and nodule primordium activation and organ differentiation, the major difference between the two developmental programs lies in the specification of founder cells. It is suggested that differing ratios of auxin and cytokinin are likely to specify the precursors of the different root organs.


2021 ◽  
Author(s):  
Paolo M. Triozzi ◽  
Thomas B. Irving ◽  
Henry W. Schmidt ◽  
Zachary P. Keyser ◽  
Sanhita Chakraborty ◽  
...  

ABSTRACTMost legumes can establish a symbiotic association with soil rhizobia that triggers the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharide (LCO) signal in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) acts as an essential positive regulator of nodule organogenesis, and specific CK receptors are required for nodule formation. Temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In the present study, using a fluorescence-based CK sensor (TCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the CK response’s sequential activation during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYL TRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::tdTOMATO and the CK sensor showed that IPT3 induction in the root stele at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.One-sentence summaryHigh-resolution spatiotemporal imaging of cytokinin signaling reveals IPT3 function during indeterminate nodule development in Medicago truncatula


2021 ◽  
Vol 288 (1951) ◽  
pp. 20210812
Author(s):  
Kenjiro W. Quides ◽  
Alexandra J. Weisberg ◽  
Jerry Trinh ◽  
Fathi Salaheldine ◽  
Paola Cardenas ◽  
...  

Legumes preferentially associate with and reward beneficial rhizobia in root nodules, but the processes by which rhizobia evolve to provide benefits to novel hosts remain poorly understood. Using cycles of in planta and in vitro evolution, we experimentally simulated lifestyles where rhizobia repeatedly interact with novel plant genotypes with which they initially provide negligible benefits. Using a full-factorial replicated design, we independently evolved two rhizobia strains in associations with each of two Lotus japonicus genotypes that vary in regulation of nodule formation. We evaluated phenotypic evolution of rhizobia by quantifying fitness, growth effects and histological features on hosts, and molecular evolution via genome resequencing. Rhizobia evolved enhanced host benefits and caused changes in nodule development in one of the four host–symbiont combinations, that appeared to be driven by reduced costs during symbiosis, rather than increased nitrogen fixation. Descendant populations included genetic changes that could alter rhizobial infection or proliferation in host tissues, but lack of evidence for fixation of these mutations weakens the results. Evolution of enhanced rhizobial benefits occurred only in a subset of experiments, suggesting a role for host–symbiont genotype interactions in mediating the evolution of enhanced benefits from symbionts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jieshun Lin ◽  
Yuda Purwana Roswanjaya ◽  
Wouter Kohlen ◽  
Jens Stougaard ◽  
Dugald Reid

AbstractLegumes balance nitrogen acquisition from soil nitrate with symbiotic nitrogen fixation. Nitrogen fixation requires establishment of a new organ, which is a cytokinin dependent developmental process in the root. We found cytokinin biosynthesis is a central integrator, balancing nitrate signalling with symbiotic acquired nitrogen. Low nitrate conditions provide a permissive state for induction of cytokinin by symbiotic signalling and thus nodule development. In contrast, high nitrate is inhibitory to cytokinin accumulation and nodule establishment in the root zone susceptible to nodule formation. This reduction of symbiotic cytokinin accumulation was further exacerbated in cytokinin biosynthesis mutants, which display hypersensitivity to nitrate inhibition of nodule development, maturation and nitrogen fixation. Consistent with this, cytokinin application rescues nodulation and nitrogen fixation of biosynthesis mutants in a concentration dependent manner. These inhibitory impacts of nitrate on symbiosis occur in a Nlp1 and Nlp4 dependent manner and contrast with the positive influence of nitrate on cytokinin biosynthesis that occurs in species that do not form symbiotic root nodules. Altogether this shows that legumes, as exemplified by Lotus japonicus, have evolved a different cytokinin response to nitrate compared to non-legumes.


1974 ◽  
Vol 20 (5) ◽  
pp. 755-758 ◽  
Author(s):  
C. R. MacKenzie ◽  
D. C. Jordan

In three ineffective associations between Medicago sativa (alfalfa) and Rhizobium meliloti the initial stages of nodule formation, resulting in the release of the bacteria into the host cells, were found to follow the normal pattern of nodule development. In nodule tissue formed by two laboratory-produced ineffective mutants, a rapid disintegration of the invading bacteria was observed to occur shortly after the release of the bacteria into the plant cells. The disintegrating bacteria were in intimate association with large amounts of rough endoplasmic reticulum (ER). An increase in the number of mitochondria occurred at this stage as well and the peripheries of the plant cells were often lined with starch granules. Only occasionally was the stage of enclosing-membrane formation reached. In the third ineffective association, a naturally occurring one, the bacteria were transformed into the nitrogen-fixing or bacteroidal forms and were surrounded by enclosing membranes. Dissolution of the bacteria occurred at a slightly later stage in this association and was again accompanied by a buildup of rough ER. Evidence is presented to suggest that the plant response, as characterized by this ER buildup in these ineffective associations, was a manifestation of nitrogen starvation.


Sign in / Sign up

Export Citation Format

Share Document