Parallels between hearing and seeing support physicalism

2003 ◽  
Vol 26 (1) ◽  
pp. 31-32
Author(s):  
Stephen Handel ◽  
Molly L. Erickson

AbstractThere are 2,000 hair cells in the cochlea, but only three cones in the retina. This disparity can be understood in terms of the differences between the physical characteristics of the auditory signal (discrete excitations and resonances requiring many narrowly tuned receptors) and those of the visual signal (smooth daylight excitations and reflectances requiring only a few broadly tuned receptors). We argue that this match supports the physicalism of color and timbre.

2018 ◽  
Vol 31 (7) ◽  
pp. 675-688 ◽  
Author(s):  
Stefania S. Moro ◽  
Jennifer K. E. Steeves

Abstract Observing motion in one modality can influence the perceived direction of motion in a second modality (dynamic capture). For example observing a square moving in depth can influence the perception of a sound to increase in loudness. The current study investigates whether people who have lost one eye are susceptible to audiovisual dynamic capture in the depth plane similar to binocular and eye-patched viewing control participants. Partial deprivation of the visual system from the loss of one eye early in life results in changes in the remaining intact senses such as hearing. Linearly expanding or contracting discs were paired with increasing or decreasing tones and participants were asked to indicate the direction of the auditory stimulus. Magnitude of dynamic visual capture was measured in people with one eye compared to eye-patched and binocular viewing controls. People with one eye have the same susceptibility to dynamic visual capture as controls, where they perceived the direction of the auditory signal to be moving in the direction of the incongruent visual signal, despite previously showing a lack of visual dominance for audiovisual cues. This behaviour may be the result of directing attention to the visual modality, their partially deficient sense, in order to gain important information about approaching and receding stimuli which in the former case could be life-threatening. These results contribute to the growing body of research showing that people with one eye display unique accommodations with respect to audiovisual processing that are likely adaptive in each unique sensory situation.


2020 ◽  
Vol 82 (7) ◽  
pp. 3544-3557 ◽  
Author(s):  
Jemaine E. Stacey ◽  
Christina J. Howard ◽  
Suvobrata Mitra ◽  
Paula C. Stacey

AbstractSeeing a talker’s face can aid audiovisual (AV) integration when speech is presented in noise. However, few studies have simultaneously manipulated auditory and visual degradation. We aimed to establish how degrading the auditory and visual signal affected AV integration. Where people look on the face in this context is also of interest; Buchan, Paré and Munhall (Brain Research, 1242, 162–171, 2008) found fixations on the mouth increased in the presence of auditory noise whilst Wilson, Alsius, Paré and Munhall (Journal of Speech, Language, and Hearing Research, 59(4), 601–615, 2016) found mouth fixations decreased with decreasing visual resolution. In Condition 1, participants listened to clear speech, and in Condition 2, participants listened to vocoded speech designed to simulate the information provided by a cochlear implant. Speech was presented in three levels of auditory noise and three levels of visual blurring. Adding noise to the auditory signal increased McGurk responses, while blurring the visual signal decreased McGurk responses. Participants fixated the mouth more on trials when the McGurk effect was perceived. Adding auditory noise led to people fixating the mouth more, while visual degradation led to people fixating the mouth less. Combined, the results suggest that modality preference and where people look during AV integration of incongruent syllables varies according to the quality of information available.


2012 ◽  
Vol 25 (0) ◽  
pp. 112 ◽  
Author(s):  
Lukasz Piwek ◽  
Karin Petrini ◽  
Frank E. Pollick

Multimodal perception of emotions has been typically examined using displays of a solitary character (e.g., the face–voice and/or body–sound of one actor). We extend investigation to more complex, dyadic point-light displays combined with speech. A motion and voice capture system was used to record twenty actors interacting in couples with happy, angry and neutral emotional expressions. The obtained stimuli were validated in a pilot study and used in the present study to investigate multimodal perception of emotional social interactions. Participants were required to categorize happy and angry expressions displayed visually, auditorily, or using emotionally congruent and incongruent bimodal displays. In a series of cross-validation experiments we found that sound dominated the visual signal in the perception of emotional social interaction. Although participants’ judgments were faster in the bimodal condition, the accuracy of judgments was similar for both bimodal and auditory-only conditions. When participants watched emotionally mismatched bimodal displays, they predominantly oriented their judgments towards the auditory rather than the visual signal. This auditory dominance persisted even when the reliability of auditory signal was decreased with noise, although visual information had some effect on judgments of emotions when it was combined with a noisy auditory signal. Our results suggest that when judging emotions from observed social interaction, we rely primarily on vocal cues from the conversation, rather then visual cues from their body movement.


2019 ◽  
Vol 62 (10) ◽  
pp. 3860-3875 ◽  
Author(s):  
Kaylah Lalonde ◽  
Lynne A. Werner

Purpose This study assessed the extent to which 6- to 8.5-month-old infants and 18- to 30-year-old adults detect and discriminate auditory syllables in noise better in the presence of visual speech than in auditory-only conditions. In addition, we examined whether visual cues to the onset and offset of the auditory signal account for this benefit. Method Sixty infants and 24 adults were randomly assigned to speech detection or discrimination tasks and were tested using a modified observer-based psychoacoustic procedure. Each participant completed 1–3 conditions: auditory-only, with visual speech, and with a visual signal that only cued the onset and offset of the auditory syllable. Results Mixed linear modeling indicated that infants and adults benefited from visual speech on both tasks. Adults relied on the onset–offset cue for detection, but the same cue did not improve their discrimination. The onset–offset cue benefited infants for both detection and discrimination. Whereas the onset–offset cue improved detection similarly for infants and adults, the full visual speech signal benefited infants to a lesser extent than adults on the discrimination task. Conclusions These results suggest that infants' use of visual onset–offset cues is mature, but their ability to use more complex visual speech cues is still developing. Additional research is needed to explore differences in audiovisual enhancement (a) of speech discrimination across speech targets and (b) with increasingly complex tasks and stimuli.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thorben Hülsdünker ◽  
David Riedel ◽  
Hannes Käsbauer ◽  
Diemo Ruhnow ◽  
Andreas Mierau

Although vision is the dominating sensory system in sports, many situations require multisensory integration. Faster processing of auditory information in the brain may facilitate time-critical abilities such as reaction speed however previous research was limited by generic auditory and visual stimuli that did not consider audio-visual characteristics in ecologically valid environments. This study investigated the reaction speed in response to sport-specific monosensory (visual and auditory) and multisensory (audio-visual) stimulation. Neurophysiological analyses identified the neural processes contributing to differences in reaction speed. Nineteen elite badminton players participated in this study. In a first recording phase, the sound profile and shuttle speed of smash and drop strokes were identified on a badminton court using high-speed video cameras and binaural recordings. The speed and sound characteristics were transferred into auditory and visual stimuli and presented in a lab-based experiment, where participants reacted in response to sport-specific monosensory or multisensory stimulation. Auditory signal presentation was delayed by 26 ms to account for realistic audio-visual signal interaction on the court. N1 and N2 event-related potentials as indicators of auditory and visual information perception/processing, respectively were identified using a 64-channel EEG. Despite the 26 ms delay, auditory reactions were significantly faster than visual reactions (236.6 ms vs. 287.7 ms, p < 0.001) but still slower when compared to multisensory stimulation (224.4 ms, p = 0.002). Across conditions response times to smashes were faster when compared to drops (233.2 ms, 265.9 ms, p < 0.001). Faster reactions were paralleled by a lower latency and higher amplitude of the auditory N1 and visual N2 potentials. The results emphasize the potential of auditory information to accelerate the reaction time in sport-specific multisensory situations. This highlights auditory processes as a promising target for training interventions in racquet sports.


2018 ◽  
Vol 30 (3) ◽  
pp. 319-337 ◽  
Author(s):  
David M. Simon ◽  
Mark T. Wallace

Multisensory integration of visual mouth movements with auditory speech is known to offer substantial perceptual benefits, particularly under challenging (i.e., noisy) acoustic conditions. Previous work characterizing this process has found that ERPs to auditory speech are of shorter latency and smaller magnitude in the presence of visual speech. We sought to determine the dependency of these effects on the temporal relationship between the auditory and visual speech streams using EEG. We found that reductions in ERP latency and suppression of ERP amplitude are maximal when the visual signal precedes the auditory signal by a small interval and that increasing amounts of asynchrony reduce these effects in a continuous manner. Time–frequency analysis revealed that these effects are found primarily in the theta (4–8 Hz) and alpha (8–12 Hz) bands, with a central topography consistent with auditory generators. Theta effects also persisted in the lower portion of the band (3.5–5 Hz), and this late activity was more frontally distributed. Importantly, the magnitude of these late theta oscillations not only differed with the temporal characteristics of the stimuli but also served to predict participants' task performance. Our analysis thus reveals that suppression of single-trial brain responses by visual speech depends strongly on the temporal concordance of the auditory and visual inputs. It further illustrates that processes in the lower theta band, which we suggest as an index of incongruity processing, might serve to reflect the neural correlates of individual differences in multisensory temporal perception.


Author(s):  
G.J. Spector ◽  
C.D. Carr ◽  
I. Kaufman Arenberg ◽  
R.H. Maisel

All studies on primary neural degeneration in the cochlea have evaluated the end stages of degeneration or the indiscriminate destruction of both sensory cells and cochlear neurons. We have developed a model which selectively simulates the dystrophic changes denoting cochlear neural degeneration while sparing the cochlear hair cells. Such a model can be used to define more precisely the mechanism of presbycusis or the hearing loss in aging man.Twenty-two pigmented guinea pigs (200-250 gm) were perfused by the perilymphatic route as live preparations using fluorocitrate in various concentrations (15-250 ug/cc) and at different incubation times (5-150 minutes). The barium salt of DL fluorocitrate, (C6H4O7F)2Ba3, was reacted with 1.0N sulfuric acid to precipitate the barium as a sulfate. The perfusion medium was prepared, just prior to use, as follows: sodium phosphate buffer 0.2M, pH 7.4 = 9cc; fluorocitrate = 15-200 mg/cc; and sucrose = 0.2M.


Author(s):  
W.R. Jones ◽  
S. Coombs ◽  
J. Janssen

The lateral line system of the mottled sculpin, like that of most bony fish, has both canal (CNM) and superficial (SNM) sensory end organs, neuromasts, which are distributed on the head and trunk in discrete, readily identifiable groupings (Fig. 1). CNM and SNM differ grossly in location and in overall size and shape. The former are located in subdermal canals and are larger and asymmetric in shape, The latter are located directly on the surface of the skin and are much smaller and more symmetrical It has been suggested that the two may differ at a more fundamental level in such functionally related parameters as extent of myelination of innervating fibers and the absence of efferent innervation in SNM. The present study addresses the validity of these last two features as distinguishing criteria by examining the structure of those SNM populations indicated in Fig. 1 at both the light and electron microscopic levels.All of the populations of SNM examined conform in general to previously published descriptions, consisting of a neuroepithelium composed of sensory hair cells, support cells and mantle cells, Several significant differences from these accounts have, however, emerged. Firstly, the structural composition of the innervating fibers is heterogeneous with respect to the extent of myelination. All SNM groups, with the possible exception of the TRrs and CFLs, possess both myelinated and unmyelinated fibers within the neuroepithelium proper (Fig. 2), just as do CNM. The extent of myelina- tion is quite variable, with some fibers sheath terminating just before crossing the neuroepithelial basal lamina, some just after and a few retaining their myelination all the way to the base of the hair cells in the upper third of the neuroepithelium. Secondly, all SNMs possess fibers that may, on the basis of ultrastructural criteria, be identified as efferent. Such fibers contained numerous cytoplasmic vesicles, both clear and with dense cores. In regions where such fibers closely apposed hair cells, subsynaptic cisternae were observed in the hair cell (Fig. 3).


Author(s):  
Zhixian Wang ◽  
Pinjin Zhu ◽  
Jianhe Sun ◽  
Xuezheng Song

Hearing research is important not only for clinical, professional and military medicine, but also for toxicology, gerontology and genetics. Ultrastructure of the cochlea attracts much attention of electron microscopists, (1―3) but the research lags far behind that of the other parts of the organnism. On the basis of careful microdissection, technical improvment and accurate observation, we have got some new findings which have not been reported in the literature.We collected four cochleas from human corpses. Temporal bones dissected 1 h after death and cochleas perfused with fixatives 4 h after death were good enough in terms of preservation of fine structures. SEM:The apical surface of OHCs (Outer hair cells) and DTs (Deiters cells) is narrower than that of IPs (Inner pillar cells). The mosaic configuration of the reticular membrane is not typical. The stereocilia of IHCs (Inner hair cells) are not uniform and some kinocilia could be seen on the OHCs in adults. The epithelial surface of RM (Reissner’s membrane) is not smooth and no mesh could be seen on the mesothelial surface of RM. TEM.


1982 ◽  
Vol 47 (4) ◽  
pp. 373-375 ◽  
Author(s):  
James L. Fitch ◽  
Thomas F. Williams ◽  
Josephine E. Etienne

The critical need to identify children with hearing loss and provide treatment at the earliest possible age has become increasingly apparent in recent years (Northern & Downs, 1978). Reduction of the auditory signal during the critical language-learning period can severely limit the child's potential for developing a complete, effective communication system. Identification and treatment of children having handicapping conditions at an early age has gained impetus through the Handicapped Children's Early Education Program (HCEEP) projects funded by the Bureau of Education for the Handicapped (BEH).


Sign in / Sign up

Export Citation Format

Share Document