V. Heating and Dynamics of Chromosphere and Corona

1988 ◽  
Vol 20 (1) ◽  
pp. 100-102
Author(s):  
G.E. Brueckner

The crucial role of magnetic fields in any mechanism to heat the outer solar atmosphere has been generally accepted by all authors. However, there is still no agreement about the detailed function of the magnetic field. Heating mechanisms can be divided up into 4 classes: (I) The magnetic field plays a passive role as a suitable medium for the propagation of Alfvén waves from the convection zone into the corona (Ionson, 1984). (II) In closed magnetic structures the slow random shuffling of field lines by convective motions below the surface induces electric currents in the corona which heat it by Joule dissipation (Heyvaerts and Priest, 1984). (Ill) Emerging flux which is generated in the convection zone reacts with ionized material while magnetic field lines move through the chromosphere, transition zone and corona. Rapid field line annihilation, reconnection and drift currents result in heating and material ejection (Brueckner, 1987; Brueckner et al., 1987; Cook et al., 1987). (IV) Acoustic waves which could heat the corona can be guided by magnetic fields. Temperature distribution, wave motions and shock formation are highly dependent on the geometry of the flux tubes (Ulmschneider and Muchmore, 1986; Ulmschneider, Muchmore and Kalkofen, 1987).

2008 ◽  
Vol 4 (S257) ◽  
pp. 555-561 ◽  
Author(s):  
Yuri T. Tsap ◽  
Alexander V. Stepanov ◽  
Yulia. G. Kopylova

AbstractThe propagation of Alfvén waves from the photosphere into the corona with regard to the fine structure of the magnetic field is considered. The energy flux of Alfvén–type waves generated in the photosphere by convective motions does not depend on the ionization ratio. The reflection coefficient continuously decreases with a decrease of wave period. Influence of the external magnetic field on the Spruit cutoff frequency for transverse (kink) modes excited in the thin magnetic flux tubes is analyzed. Torsional modes can penetrate into the upper atmosphere most effectively since their amplitudes does not increase with height in the photosphere while kink ones can be transformed into shock waves in the lower chromosphere because of a significant increase of amplitudes. In spite of stratification the linearity of Alfvén–type modes in the chromosphere is conserved due to violation of the WKB approximation. The important role of the magnetic canopy is discussed. Alfvén waves generated by convective motions in the photosphere can contribute significantly to the heating of the coronal plasma in quite regions of the Sun.


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


1995 ◽  
Vol 12 (2) ◽  
pp. 180-185 ◽  
Author(s):  
D. J. Galloway ◽  
C. A. Jones

AbstractThis paper discusses problems which have as their uniting theme the need to understand the coupling between a stellar convection zone and a magnetically dominated corona above it. Interest is concentrated on how the convection drives the atmosphere above, loading it with the currents that give rise to flares and other forms of coronal activity. The role of boundary conditions appears to be crucial, suggesting that a global understanding of the magnetic field system is necessary to explain what is observed in the corona. Calculations are presented which suggest that currents flowing up a flux rope return not in the immediate vicinity of the rope but rather in an alternative flux concentration located some distance away.


1993 ◽  
Vol 10 (3) ◽  
pp. 247-249 ◽  
Author(s):  
C.M. Wright ◽  
D.K. Aitken ◽  
C.H. Smith ◽  
P.F. Roche

AbstractThe star-formation process is an outstanding and largely unsolved problem in astrophysics. The role of magnetic fields is unclear but is widely considered to be important at all stages of protostellar evolution, from cloud collapse to ZAMS. For example, in some hydromagnetic models, the field may assist in removing angular momentum, thereby driving accretion and perhaps bipolar outflows.Spectropolarimetry between 8 and 13μm provides information on the direction of the transverse component of a magnetic field through the alignment of dust grains. We present results of 8–13μm spectropolarimetric observations of a number of bipolar molecular outflow sources, and compare the field directions observed with the axes of the outflows and putative disk-like structures observed to be associated with some of the objects. There is a strong correlation, though so far with limited statistics, between the magnetic field and disk orientations. We compare our results with magnetic field configurations predicted by current models for hydromagnetically driven winds from the disks around Young Stellar Objects (YSOs). Our results appear to argue against the Pudritz and Norman model and instead seem to support the Uchida and Shibata model.


2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


1968 ◽  
Vol 35 ◽  
pp. 127-130 ◽  
Author(s):  
S. I. Syrovatsky ◽  
Y. D. Zhugzhda

The convection in a compressible inhomogeneous conducting fluid in the presence of a vertical uniform magnetic field has been studied. It is shown that a new mode of oscillatory convection occurs, which exists in arbitrarily strong magnetic fields. The convective cells are stretched along the magnetic field, their horizontal dimensions are determined by radiative cooling. Criteria for convective instability in a polytropic atmosphere are obtained for various boundary conditions in the case when the Alfvén velocity is higher compared with the velocity of sound.The role of oscillatory convection in the origin of sunspots and active regions is discussed.


1988 ◽  
Vol 123 ◽  
pp. 167-170
Author(s):  
Gaetano Belvedere

The overshoot layer in stellar convection zones is slightly subadiabatic and can be considered as a stable region for storage of magnetic flux. Belvedere, Pidatella and Stix (1986) estimated the size of the overshoot layer and computed the magnetic field strength, beyond which toroidal flux tubes become unstable to buoyancy, for a number of main sequence spectral types ranging from F5 to K0. Here we estimate the relative frequency perturbation of high order acoustic modes due to the presence of a non-oblique axisymmetric magnetic field in the overshoot layer. We find that increases with the advancing spectral type, the predicted frequency splitting being large enough to be detected by observations, at least for the Sun.We conclude that magnetic field induced frequency splitting of high order acoustic modes may well be due to a toroidal field of relatively moderate strength just beneath the bottom of the convection zone.


2008 ◽  
Vol 4 (S259) ◽  
pp. 551-552
Author(s):  
Hanna Kotarba ◽  
H. Lesch ◽  
K. Dolag ◽  
T. Naab ◽  
P. H. Johansson ◽  
...  

AbstractWe present a set of global, self-consistentN-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the codeVine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċB-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the codeGadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.


1989 ◽  
Vol 136 ◽  
pp. 243-263 ◽  
Author(s):  
F. Yusef-Zadeh

Recent studies of the Galactic center environment have revealed a wealth of new thermal and nonthermal features with unusual characteristics. A system of nonthermal filamentary structures tracing magnetic field lines are found to extend over 200pc in the direction perpendicular to the Galactic plane. Ionized structures, like nonthermal features, appear filamentary and show forbidden velocity fields in the sense of Galactic rotation and large line widths. Faraday rotation characteristics and the flat spectral index distributions of the nonthermal filaments suggest a mixture of thermal and nonthermal gas. Furthermore, the relative spatial distributions of the magnetic structures with respect to those of the ionized and molecular gas suggest a physical interaction between these two systems. In spite of numerous questions concerning the origin of the large-scale organized magnetic structures, the mechanism by which particles are accelerated to relativistic energies, and the source or sources of heating the dust and gas, recent studies have been able to distinguish the inner 200pc of the nucleus from the disk of the Galaxy in at least two more respects: (1) the recognition that the magnetic field has a large-scale structure and is strong, uniform and dynamically important; and (2) the physics of interstellar matter may be dominated by the poloidal component of the magnetic field.


2017 ◽  
Vol 13 (S336) ◽  
pp. 215-218
Author(s):  
Ciriaco Goddi ◽  
Gabriele Surcis

AbstractThe Turner-Welch Object in the W3(OH) high-mass star forming complex drives a synchrotron jet, which is quite exceptional for a high-mass protostar, and is associated with a strongly polarized water maser source, W3(H2O), making it an optimal target to investigate the role of magnetic fields on the innermost scales of protostellar disk-jet systems. We report here full polarimetric VLBA observations of water masers. The linearly polarized emission from water masers provides clues on the orientation of the local magnetic field, while the measurement of the Zeeman splitting from circular polarization provides its strength. By combining the information on the measured orientation and strength of the magnetic field with the knowledge of the maser velocities, we infer that the magnetic field evolves from having a dominant component parallel to the outflow velocity in the pre-shock gas (with field strengths of the order of a few tens of mG), to being mainly dominated by the perpendicular component (of order of a few hundred of mG) in the post-shock gas where the water masers are excited. The general implication is that in the undisturbed (i.e. not-shocked) circumstellar gas, the flow velocities would follow closely the magnetic field lines, while in the shocked gas the magnetic field would be re-configured to be parallel to the shock front as a consequence of gas compression.


Sign in / Sign up

Export Citation Format

Share Document