scholarly journals On the Formulae for Calculating the Magnetic Field in the Source of Solar Microwave Bursts

1993 ◽  
Vol 141 ◽  
pp. 295-298
Author(s):  
Ren-Yang Zhao

AbstractBased on the theory of gyro-synchrotron radiation from both thermal and nonthermal electrons, and adopting the relation between the peak frequency and the corresponding rise time of microwave bursts, we have derived several analytical formulae for calculating the magnetic field in the source regions of solar microwave bursts.

1969 ◽  
Vol 1 (6) ◽  
pp. 274-276 ◽  
Author(s):  
L. J. Gleeson ◽  
M. P. C. Legg ◽  
K. C. Westfold

This paper is a preliminary account of the calculation of the circularly polarized synchrotron radiation received from a distribution of electricallycharged particles confined to a thin shell in the magnetic field of a dipole. Calculations of the total radiation and the degree of linear polarization have previously been carried out, and these calculations are duplicated in part.


1988 ◽  
Vol 101 ◽  
pp. 47-50
Author(s):  
E.R. Seaquist ◽  
D.A. Frail ◽  
M.F. Bode ◽  
J.A. Roberts ◽  
D.C.B. Whittet ◽  
...  

AbstractWe present radio and optical images of the shell-like remnant of the 1901 outburst of Nova GK Persei. The behaviour of this object is remarkably similar to supernova remnants. The synchrotron radiation-emitting shell is polarized with the magnetic field oriented radially, as in young SNR’s. This similarity plus extensive data we have acquired on the expansion and the interstellar environment of GK Per indicate that the nova shell is colliding with ambient gas whose density is substantially higher than the ISM.Furthermore, there is strong evidence that the ambient gas is circumstellar rather than interstellar, and that this material is the shell of an ancient planetary nebula associated with the white dwarf companion of GK Per.


2012 ◽  
Vol 10 (06) ◽  
pp. 1250068 ◽  
Author(s):  
E. A. IVANCHENKO

Based on the Liouville–von Neumann equation, we obtain a closed system of equations for the description of a qutrit or coupled qutrits in an arbitrary, time-dependent, external magnetic field. The dependence of the dynamics on the initial states and the magnetic field modulation is studied analytically and numerically. We compare the relative entanglement measure's dynamics in bi-qudits with permutation particle symmetry. We find the magnetic field modulation which retains the entanglement in the system of two coupled qutrits. Analytical formulae for the entanglement measures in finite chains from two to six qutrits or three quartits are presented.


Geophysics ◽  
1970 ◽  
Vol 35 (2) ◽  
pp. 331-336 ◽  
Author(s):  
Saurabh K. Verma ◽  
Rishi Narain Singh

Analytic expressions for the quasi‐static electromagnetic response of a sphere in presence of unit‐step and ramp‐type time varying magnetic fields are derived. The conductivity inside the sphere is assumed to vary linearly with radius, i.e. [Formula: see text], where ρ is radial coordinate, [Formula: see text] is a constant and a is the radius of sphere. Curves showing the decay of the magnetic field for both types of fields are presented. In the case of ramp‐type applied magnetic field, the magnitudes of maxima of the induced magnetic field are found to decrease with increase in the rise time of the applied field and, hence, exciting pulses having small values of rise time should be used. It is believed that the analysis will be useful in the geoelectric exploration for highly conducting mineral deposits.


2012 ◽  
Vol 20 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Fuchun Xi ◽  
Tan Shi ◽  
Qingyan Fan ◽  
Soren Prestemon ◽  
Weishi Wan ◽  
...  

The magnetic field configuration of the previously proposed knot undulator [Qiaoet al.(2009).Rev. Sci. Instrum.80, 085108] is realised in the design of a hybridized elliptically polarized undulator, which is presented. Although the details of the field distribution are not the same as those in the theoretical proposal, it is demonstrated that the practical knot undulator could work perfectly. In order to understand the minor discrepancies of the two, mathematical formulae of the synchrotron radiation are derived based on the Fourier transform of the magnetic field. From the results of calculations by simulation program, the discrepancies could be well interpreted by the corresponding formulae. The results show the importance of optimization of the end sections of the knot undulator to suppress the on-axis heat load. Furthermore, a study of the impact of the undulator on beam dynamics of the storage ring was conducted using the Shanghai Synchrotron Radiation Facility as an example and the results show that the knot undulator has little effect on the beam.


2015 ◽  
Vol 50 (9-10) ◽  
pp. 773-780 ◽  
Author(s):  
M. Stȩkiel ◽  
R. Przeniosło ◽  
M. Duczmal ◽  
D. Wardecki ◽  
T. Buslaps

Sign in / Sign up

Export Citation Format

Share Document