scholarly journals The Reversed Polarity Structures of Chromospheric Magnetic Fields in Active Regions

1993 ◽  
Vol 141 ◽  
pp. 299-301
Author(s):  
Wei Li ◽  
Guoxiang Ai ◽  
Hongqi Zhang ◽  
Jimin Chen

AbstractThe reversed polarity structures of chromospheric magnetic fields are magnetic gulfs and islands of opposite polarity relative to the underlying photospheric fields. In this paper data were analyzed from the Solar Magnetic Field Telescope of the Huairou Solar Observing Station (HSOS) in Beijing. From more than 300 pairs of photospheric magnetograms (in FeI λ5324.19 Å) and relevant chromospheric magnetograms (in Hβλ4861.34 Å), the reality of the reversed polarity structures is demonstrated. According to an analysis of the fine structures of the magnetic fields in the two layers of active regions, we found that there are probably four different types.

1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


2015 ◽  
Vol 11 (S320) ◽  
pp. 167-174
Author(s):  
M. S. Wheatland ◽  
S. A. Gilchrist

AbstractWe review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


1993 ◽  
Vol 141 ◽  
pp. 149-155 ◽  
Author(s):  
Guoxiang Ai

AbstractThe historical development of optical instruments for solar physics is outlined, from white light to unpolarized and polarized monochromatic light, to Stokes profiles and simultaneous fields of view, from points to lines, plane to cube. An evolutionary series and classificaton of instruments for the solar magnetic field is described. As a next step the 2-D real time polarizing spectrograph has been proposed. The planned instruments in China for measurements of solar magnetic and velocity fields are briefly introduced.


1968 ◽  
Vol 35 ◽  
pp. 127-130 ◽  
Author(s):  
S. I. Syrovatsky ◽  
Y. D. Zhugzhda

The convection in a compressible inhomogeneous conducting fluid in the presence of a vertical uniform magnetic field has been studied. It is shown that a new mode of oscillatory convection occurs, which exists in arbitrarily strong magnetic fields. The convective cells are stretched along the magnetic field, their horizontal dimensions are determined by radiative cooling. Criteria for convective instability in a polytropic atmosphere are obtained for various boundary conditions in the case when the Alfvén velocity is higher compared with the velocity of sound.The role of oscillatory convection in the origin of sunspots and active regions is discussed.


2019 ◽  
Vol 627 ◽  
pp. A11
Author(s):  
I. O. I. Virtanen ◽  
I. I. Virtanen ◽  
A. A. Pevtsov ◽  
L. Bertello ◽  
A. Yeates ◽  
...  

Aims. The evolution of the photospheric magnetic field has only been regularly observed since the 1970s. The absence of earlier observations severely limits our ability to understand the long-term evolution of solar magnetic fields, especially the polar fields that are important drivers of space weather. Here, we test the possibility to reconstruct the large-scale solar magnetic fields from Ca II K line observations and sunspot magnetic field observations, and to create synoptic maps of the photospheric magnetic field for times before modern-time magnetographic observations. Methods. We reconstructed active regions from Ca II K line synoptic maps and assigned them magnetic polarities using sunspot magnetic field observations. We used the reconstructed active regions as input in a surface flux transport simulation to produce synoptic maps of the photospheric magnetic field. We compared the simulated field with the observed field in 1975−1985 in order to test and validate our method. Results. The reconstruction very accurately reproduces the long-term evolution of the large-scale field, including the poleward flux surges and the strength of polar fields. The reconstruction has slightly less emerging flux because a few weak active regions are missing, but it includes the large active regions that are the most important for the large-scale evolution of the field. Although our reconstruction method is very robust, individual reconstructed active regions may be slightly inaccurate in terms of area, total flux, or polarity, which leads to some uncertainty in the simulation. However, due to the randomness of these inaccuracies and the lack of long-term memory in the simulation, these problems do not significantly affect the long-term evolution of the large-scale field.


2016 ◽  
Vol 12 (S327) ◽  
pp. 77-81
Author(s):  
S. Candelaresi ◽  
D. I. Pontin ◽  
G. Hornig

AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.


Sign in / Sign up

Export Citation Format

Share Document