scholarly journals Statistical Characteristics of Solar Proton Flares

1993 ◽  
Vol 141 ◽  
pp. 366-368
Author(s):  
Jia-Long Wang

AbstractAn investigation of the statistical behaviour of solar flares responsible for the proton events detected at the earth orbit would be of significance for solar physics and sun-earth research. Based on the data given by Kunches (1992) and other relevant data, we study the statistical behaviour of solar proton flares. The asymmetry of distributions, special property of hard X-ray bursts and relation to the large scale mean magnetic field of the proton flares are given in this paper.

2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


1998 ◽  
Vol 167 ◽  
pp. 380-383
Author(s):  
E. Hiei

AbstractDB (disparition brusque) events are associated with dynamic phenomena such as a CME, a flare, brightening of a soft X-ray arcade, and soft X-ray dimming, and probably a change of the coronal magnetic field on a large scale. The DB event observed on January 16, 1993 identified with a CME occurred on the solar disk.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


1979 ◽  
Vol 32 (6) ◽  
pp. 671 ◽  
Author(s):  
JH Piddington

Solar ephemeral active regions may provide a larger amount of emerging magnetic flux than the active regions themselves, and the origin and disposal of this flux pose problems. The related X-ray bright points are a major feature of coronal dynamics, and the two phenomena may entail a revision of our ideas of the activity cycle. A new large-scale subsurface magnetic field system has been suggested, but it is shown that such a system is neither plausible nor necessary. The emerging magnetic bipoles merely represent loops in pre-existing vertical flux tubes which are parts of active regions or the remnants of active regions. These loops result from the kink (or helical) instability in a twisted flux tube. Their observed properties are explained in terms of the flux-rope theory of solar fields. The model is extended to some dynamical effects in emerging loops. Further observations of ephemeral active regions may provide important tests between the traditional and flux-rope theories of solar magnetic fields.


2021 ◽  
Author(s):  
Peter Gallagher ◽  
Sophie Murray ◽  
John Malone-Leigh ◽  
Joan Campanyà ◽  
Alberto Cañizares ◽  
...  

<p>Forecasting solar flares based on while-light images and photospheric magnetograms of sunspots is notoriously challenging, while accurate forecasting of coronal mass ejections (CME) is still in its infancy. That said, the chances of a CME being launched is more likely following a flare. CMEs launched from the western hemisphere and “halo” CMEs are the most likely to be geomagnetically impactful, but forecasting their arrival and impact at Earth depends on how well their velocity is known near the Sun, the solar wind conditions between the Sun and the Earth, the accuracy of theoretical models and on the orientation of the CME magnetic field.  In this presentation, we describe a well observed active region, flare, CME, radio burst and sudden geomagnetic impulse that was observed on December 7-10, 2020 by a slew of instruments (SDO, ACE, DSCOVR, PSP, US and European magnetometers). This was a solar eruption that was not expected, but the CME and resulting geomagnetic impact should have been straight-forward to model and forecast. What can we learn from our failure to forecast this simple event and its impacts at Earth? </p>


2018 ◽  
Vol 62 ◽  
pp. 01007
Author(s):  
Akiko Fujimoto ◽  
Akimasa Yoshikawa ◽  
Akihiro Ikeda

Intense X-ray fluxes during solar flares are known to cause enhanced ionization in the Earth’s ionospheric D, E and F region. This sudden change of ionospheric electron density profile is serious problem to radio wave communication and navigation system. The ground magnetograms often record the sudden change in the sunlit hemisphere during the enhanced X-ray flux, due to the sudden increase in the global ionospheric current system caused by the flare-induced enhanced ionospheric conductivity. These geomagnetic field disturbances are known as ‘‘solar flare effects’’ (SFEs) or geomagnetic crochets [Campbell, 2003]. The typical SFE is increase variation on the equatorial magnetic data. On Ionosonde observation during solar flare event, the High-Frequency (HF) radio wave blackout is often detected in ionogram due to the sudden disturbance in ionosphere. Two intense X-class solar flares occurred on 6 and 10 September 2017. We investigated the magnetic field and Ionosonde responses to the intense solar flare events. Dayside magnetic field variations sudden increased due to the ionospheric disturbance resulting from solar flare. There is no response in night side magnetometer data. The magnitude of SFE (magnetic field) is independent of solar flare x-ray magnitude. We found HF radio wave blackout in ionogram at dayside Ionosonde stations. The duration of blackout is dependent of latitude and local time of Ionosonde stations. There is the different feature of ionogram at night side.


2013 ◽  
Vol 9 (S303) ◽  
pp. 449-453
Author(s):  
Shogo Nishiyama ◽  
Kazuki Yasui ◽  
Tetsuya Nagata ◽  
Tatsuhito Yoshikawa ◽  
Hideki Uchiyama ◽  
...  

AbstractThe origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. We have found a clear excess in a longitudinal GCDX profile over a stellar number density profile in the nuclear bulge region, suggesting a significant contribution of diffuse, interstellar hot plasma to the GCDX. We have estimated that contributions of an old stellar population to the GCDX are ∼50% and ∼20% in the nuclear stellar disk and nuclear star cluster, respectively. Our near-infrared polarimetric observations show that the GCDX region is permeated by a large scale, toroidal magnetic field. Together with observed magnetic field strengths in nearly energy equipartition, the interstellar hot plasma could be confined by the toroidal magnetic field.


1988 ◽  
Vol 6 (3) ◽  
pp. 503-511 ◽  
Author(s):  
T. A. Potemra ◽  
M. J. Engebretson ◽  
L. J. Zanetti ◽  
R. E. Erlandson ◽  
P. F. Bythrow

When viewed from outer space, the earth's magnetic field does not resemble a simple dipole, but is severely distorted into a comet-shaped configuration by the continuous flow of solar wind plasma. A complicated system of currents flows within this distorted magnetic field configuration called the ‘magnetosphere’ (See figure 1). For example, the compression of the geomagnetic field by the solar wind on the dayside of the earth is associated with a large-scale current flowing across the geomagnetic field lines, called the ‘Chapman-Ferraro’ or magnetopause current. The magnetospheric system includes large-scale currents that flow in the ‘tail’, the ring current that flows at high altitudes around the equator of the earth, field-aligned ‘Birkeland’ currents that flow along geomagnetic field lines into and away from the two auroral regions, and a complex system of currents that flows completely within the layers of the ionosphere, the earth's ionized atmosphere. The intensities of these various currents reach millions of amperes and are closely related to solar activity. The geomagnetic field lines can also oscillate, like giant vibrating strings, at specified resonant frequencies. The effects of these vibrations, sometimes described as ‘standing Alfvén waves’, have been observed on the ground in magnetic field recordings dating back to the beginning of the century. Observations of currents and waves with satellite-borne magnetic field experiments have provided a new perspective on the complicated plasma processes that occur in the magnetosphere. Some of the new observations are described here.


Sign in / Sign up

Export Citation Format

Share Document