Nature of the Requirements for Reference Coordinate Systems

1975 ◽  
Vol 26 ◽  
pp. 49-62
Author(s):  
C. A. Lundquist

AbstractThe current need for more precisely defined reference coordinate systems arises for geodynamics because the Earth can certainly not be treated as a rigid body when measurement uncertainties reach the few centimeter scale or its angular equivalent. At least two coordinate systems seem to be required. The first is a system defined in space relative to appropriate astronomical objects. This system should approximate an inertial reference frame, or be accurately related to such a reference, because only such a coordinate system is suitable for ultimately expressing the dynamical equations of motion for the Earth. The second required coordinate system must be associated with the nonrigid Earth in some well defined way so that the rotational motions of the whole Earth are meaningfully represented by the transformation parameters relating the Earth system to the space-inertial system. The Earth system should be defined so that the dynamical equations for relative motions of the various internal mechanical components of the Earth and accurate measurements of these motions are conveniently expressed in this system.

1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Awadhesh Kumar Poddar ◽  
Divyanshi Sharma

AbstractIn this paper, we have studied the equations of motion for the problem, which are regularised in the neighbourhood of one of the finite masses and the existence of periodic orbits in a three-dimensional coordinate system when μ = 0. Finally, it establishes the canonical set (l, L, g, G, h, H) and forms the basic general perturbation theory for the problem.


1980 ◽  
Vol 56 ◽  
pp. 1-22 ◽  
Author(s):  
Ivan I. Mueller

AbstractA common requirement for all geodynamic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial system can be monitored. This paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed.


1973 ◽  
Vol 40 (1) ◽  
pp. 105-108
Author(s):  
T. R. Kane ◽  
B. S. Chia

To determine the motion of a symmetric gyrostat under the action of a specialized body-fixed force, dynamical equations governing rotational motions are solved, and it is then shown how results available from a certain rigid-body problem can be used to complete the integration of the remaining kinematical and dynamical equations.


1980 ◽  
Vol 56 ◽  
pp. 239-250
Author(s):  
J. B. Zieliński

AbstractThe center of mass of the Earth is commonly taken as origin for the coordinate systems used in satellite geodesy. In this paper the notion of the “geocenter” is discussed from the point of view of mechanics and geophysics. It is shown that processes in and above the crust have practically no impact on the position of the geocenter. It is possible however that motions of the inner core may cause variations of the geocenter of the order of 1 m. Nevertheless the geocenter is the best point for the origin of a coordinate system. Mather’s method of monitoring geocenter motion is discussed, and some other possibilities are mentioned. Concerning the scale problem, the role of the constant GM and time measurements in satellite net determinations are briefly discussed.


1995 ◽  
Vol 166 ◽  
pp. 293-293
Author(s):  
V. A. Brumberg

The high precision of present observations makes it reasonable to clear up a question about GRT (general relativity theory) corrections in the problem of Earth's rotation. The answer is that one may almost forget about GRT corrections when dealing in an adequate reference system (RS). The problem of Earth's rotation may be related to the relativistic hierarchy of RS started in (Brumberg and Kopejkin, 1989) and completed in (Klioner, 1993). Let letters B, G and T be related to barycentric, geocentric and topocentric RS, respectively. Let DRS and KRS be dynamically nonrotating or kinematically nonrotating RS, respectively. From the dynamical equations of rotation it follows that the most adequate system for studying the Earth's rotation is DGRS. Apart from the geophysical factors the rotation of the Earth in this system is fairly well approximated by the rigid-body rotation with some angular velocity . The same rotation of the Earth as considered in BRS and DTRS may be also approximated by the rigid-body rotation but with some additive relativistic corrections and with other angular velocities ωi and , respectively. Substituting these three rotation relations into four-dimensional BRS-DGRS and DGRS-DTRS transformations one may express ωi and in terms of and determine the additive relativistic corrections in BRS and BTRS. These corrections are of importance for treating kinematics problems in various coordinate systems and for obtaining physically meaningful solutions of the dynamical equations of rotation in the barycentric reference system.The complete text will be published in Journal of Geodynamics.


Author(s):  
Zemichael Amare ◽  
Bin Zi ◽  
Sen Qian ◽  
Lei Zu

Dynamic analysis is required for achieving higher efficiency of cable-driven parallel robots. This paper presents the dynamic analysis of the cable-driven parallel robots using the Lagrange’s method, taking cable’s mass and elasticity into account. The Lagrange’s equations of motion are derived and evaluated for the generalized coordinates of the system. The dynamic motion of the parallel robot is expressed by the generalized forces and generalized coordinates to completely specify the configuration of the whole mechanical system as well as every component of the system. The cables are modeled to control and design the motion of each part of the rigid body. The elasticity is determined using the optimal cable’s tensions and lengths. Numerical simulations are performed to obtain the dynamic motion of the cable-driven parallel robots and. Experimental analyses and the effect of the mass of the end-effector on the cable’s tension and elasticity are also investigated. These examples illustrate that the general motion of the rigid body is superior described in terms of a set of independent coordinates. The results indicate that a better speed of the end-effector can be achieved by adding the linear and rotational motions of the electrohydraulic cylinder actuators into the traditional cable-driven parallel robots.


1975 ◽  
Vol 26 ◽  
pp. 15-20

As initial guidance for its deliberations, Working Group 1 accepted the objective implied in the Colloquium title and the more explicit description contained in the First Circular announcing the Colloquium:Earth dynamics is currently the subject of intensive world-wide research efforts. As a consequence of the new insights into Earth dynamics and acceptance of the hypothesis of moving tectonic plates, as well as the ability to measure crustal motions on a global scale with a precision of a few centimeters, a number of national and international projects have been organized to pursue these investigations. In all these efforts, a common feature is the necessity for a very well defined coordinate system to which all observations can be referred and in which theories can be formulated. At this time there is no widely accepted coordinate system in the Earth or in space which is defined with the precision needed for ongoing geodynamics research.


1975 ◽  
Vol 26 ◽  
pp. 181-200
Author(s):  
R. R. Newton

AbstractThis paper describes briefly the coordinates that have been used with satellite systems that measure range or range-rate, and it shows that the methods previously used to define them lead naturally to the coordinate system needed for a dynamic Earth. This is one in which the Earth has no linear momentum and no angular momentum, and it is the only system that allows the motion of the Earth to be separated into a translation, a rotation, and an internal motion, and that preserves the usual forms of the equations of motion. The observations needed to define this system are outlined.


Sign in / Sign up

Export Citation Format

Share Document