scholarly journals On the Initial Mass Function of Be Stars and the Missing Be Stars of Late Spectral Types

2000 ◽  
Vol 175 ◽  
pp. 51-54
Author(s):  
J. Zorec

AbstractThis is an attempt at determining the IMF (Initial Mass Function) of Be stars relative to that of B stars in the vicinity of the Sun. We have represented the IMF as a power function of the stellar mass Mβ, so that the relative IMF is then proportional to Mβ(Be)–β(B). Allowing for systematic differences in the counting of Be stars due to their apparent overluminosity, a difference β(Be) – β(B) ~ 0 is found, which may indicate that there are no huge intrinsic differences between the two types of objects. In these calculations changes of spectral types due to high rotation were not taken into account. This effect may still strongly affect the results obtained. By extrapolating the MβBe) – β(B) curve to spectral types later than B7, we reckon that in a volume limited to the apparent magnitude V = 7 there may be about 150 still undetected Be stars of late spectral types.

2004 ◽  
Vol 215 ◽  
pp. 83-84
Author(s):  
J. Zorec ◽  
R. Levenhagen ◽  
J. Chauville ◽  
Y. Frémat ◽  
D. Ballereau ◽  
...  

Allowing for systematic differences in the counting of Be Stars due to their overluminosity, changes produced by their fast rotation on spectral types and time spent in the main sequence, a difference between the IMF (Be) and IMF(B) appears, which indicates that the appearance of the Be phenomenon may relay on differences in the initial star formation conditions.


1996 ◽  
Vol 145 ◽  
pp. 157-164
Author(s):  
M. Hashimoto ◽  
K. Nomoto ◽  
T. Tsujimoto ◽  
F.-K. Thielemann

Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 Mʘ to 70 Mʘ are calculated. We examine the dependence of the supernova yields on the stellar mass, 12C(α, γ)16O rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.


2021 ◽  
Vol 923 (1) ◽  
pp. 43
Author(s):  
Pieter van Dokkum ◽  
Charlie Conroy

Abstract Mass measurements and absorption-line studies indicate that the stellar initial mass function (IMF) is bottom-heavy in the central regions of many early-type galaxies, with an excess of low-mass stars compared to the IMF of the Milky Way. Here we test this hypothesis using a method that is independent of previous techniques. Low-mass stars have strong chromospheric activity characterized by nonthermal emission at short wavelengths. Approximately half of the UV flux of M dwarfs is contained in the λ1215.7 Lyα line, and we show that the total Lyα emission of an early-type galaxy is a sensitive probe of the IMF with a factor of ∼2 flux variation in response to plausible variations in the number of low-mass stars. We use the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure the Lyα line in the centers of the massive early-type galaxies NGC 1407 and NGC 2695. We detect Lyα emission in both galaxies and demonstrate that it originates in stars. We find that the Lyα to i-band flux ratio is a factor of 2.0 ± 0.4 higher in NGC 1407 than in NGC 2695, in agreement with the difference in their IMFs as previously determined from gravity-sensitive optical absorption lines. Although a larger sample of galaxies is required for definitive answers, these initial results support the hypothesis that the IMF is not universal but varies with environment.


1987 ◽  
Vol 127 ◽  
pp. 167-177
Author(s):  
R. W. O'Connell

Star formation, probably with an abnormal initial mass function, represents the most plausible sink for the large amounts of material being accreted by cD galaxies from cooling flows. There are three prominent cases (NGC 1275, PKS 0745-191, and Abell 1795) where cooling flows have apparently induced unusual stellar populations. Recent studies show that about 50% of other accreting cD's have significant ultraviolet excesses. It therefore appears that detectable accretion populations are frequently associated with cooling flows. The questions of the form of the IMF, the fraction of the flow forming stars, and the lifetime of the flow remain open.


1977 ◽  
Vol 45 ◽  
pp. 161-164
Author(s):  
W. David Arnett

Preliminary estimates are made of the absolute yields of abundant nuclei synthesized in observed stars. The compositions of helium stars of mass 3 ≤ Mα / Mʘ≤ 64 are presented, taken at the instant of instability. These stars of mass Mα are identified with stars of main sequence mass M. The amount of synthesized matter for each mass M ≥ MʘHe is estimated (Table 1). Using a variety of choices for the initial mass function (IMF) the yield per stellar generation is calculated. For standard choices of the IMF the absolute and relative yields of12C,16O,20Ne,24Mg, the Si to Ca group and the iron group agree with solar system values, to the accuracy of the calculations.


2019 ◽  
Vol 14 (S351) ◽  
pp. 438-441 ◽  
Author(s):  
Mirek Giersz ◽  
Abbas Askar ◽  
Long Wang ◽  
Arkadiusz Hypki ◽  
Agostino Leveque ◽  
...  

AbstractWe investigate the dissolution process of star clusters embedded in an external tidal field and harboring a subsystem of stellar-mass black hole. For this purpose we analyzed the MOCCA models of real star clusters contained in the Mocca Survey Database I. We showed that the presence of a stellar-mass black hole subsystem in tidally filling star cluster can lead to abrupt cluster dissolution connected with the loss of cluster dynamical equilibrium. Such cluster dissolution can be regarded as a third type of cluster dissolution mechanism. We additionally argue that such a mechanism should also work for tidally under-filling clusters with a top-heavy initial mass function.


2020 ◽  
Vol 498 (3) ◽  
pp. 4051-4059 ◽  
Author(s):  
Timothy A Davis ◽  
Freeke van de Voort

ABSTRACT The observed stellar initial mass function (IMF) appears to vary, becoming bottom-heavy in the centres of the most massive, metal-rich early-type galaxies. It is still unclear what physical processes might cause this IMF variation. In this paper, we demonstrate that the abundance of deuterium in the birth clouds of forming stars may be important in setting the IMF. We use models of disc accretion on to low-mass protostars to show that those forming from deuterium-poor gas are expected to have zero-age main-sequence masses significantly lower than those forming from primordial (high deuterium fraction) material. This deuterium abundance effect depends on stellar mass in our simple models, such that the resulting IMF would become bottom-heavy – as seen in observations. Stellar mass loss is entirely deuterium free and is important in fuelling star formation across cosmic time. Using the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation we show that stellar mass-loss-induced deuterium variations are strongest in the same regions where IMF variations are observed: at the centres of the most massive, metal-rich, passive galaxies. While our analysis cannot prove that the deuterium abundance is the root cause of the observed IMF variation, it sets the stage for future theoretical and observational attempts to study this possibility.


2020 ◽  
Vol 499 (1) ◽  
pp. 559-572
Author(s):  
Carlo Nipoti ◽  
Carlo Cannarozzo ◽  
Francesco Calura ◽  
Alessandro Sonnenfeld ◽  
Tommaso Treu

ABSTRACT The stellar initial mass function (IMF) is believed to be non-universal among early-type galaxies (ETGs). Parametrizing the IMF with the so-called IMF mismatch parameter αIMF, which is a measure of the stellar mass-to-light ratio of an ensemble of stars and thus of the ‘heaviness’ of its IMF, one finds that for ETGs αe (i.e. αIMF integrated within the effective radius Re) increases with σe (the line-of-sight velocity dispersion σlos integrated within Re) and that, within the same ETG, αIMF tends to decrease outwards. We study the effect of dissipationless (dry) mergers on the distribution of the IMF mismatch parameter αIMF in ETGs using the results of binary major and minor merging simulations. We find that dry mergers tend to make the αIMF profiles of ETGs shallower, but do not alter significantly the shape of the distributions in the spatially resolved σlos–αIMF space. Individual galaxies undergoing dry mergers tend to decrease their αe, due to erosion of αIMF gradients and mixing with stellar populations with lighter IMF. Their σe can either decrease or increase, depending on the merging orbital parameters and mass ratio, but tends to decrease for cosmologically motivated merging histories. The αe–σe relation can vary with redshift as a consequence of the evolution of individual ETGs: based on a simple dry-merging model, ETGs of given σe are expected to have higher αe at higher redshift, unless the accreted satellites are so diffuse that they contribute negligibly to the inner stellar distribution of the merger remnant.


1991 ◽  
Vol 147 ◽  
pp. 261-273
Author(s):  
Richard B. Larson

Current evidence suggests that the stellar initial mass function has the same basic form everywhere, and that its fundamental features are (1) the existence of a characteristic stellar mass of order one solar mass, and (2) the existence of an apparently universal power-law form for the mass spectrum of the more massive stars. The characteristic stellar mass may be determined in part by the typical mass scale for the fragmentation of star forming clouds, which is predicted to be of the order of one solar mass. The power-law extension of the mass spectrum toward higher masses may result from the continuing accretional growth of some stars to much larger masses; the fact that the most massive stars appear to form preferentially in cluster cores suggests that such continuing accretion may be particularly important at the centers of clusters. Numerical simulations suggest that forming systems of stars may tend to develop a hierarchical structure, possibly self-similar in nature. If most stars form in such hierarchically structured systems, and if the mass of the most massive star that forms in each subcluster increases as a power of the mass of the subcluster, then a mass spectrum of power-law form is predicted. Some possible physical effects that could lead to such a relation are briefly discussed, and some observational tests of the ideas discussed here are proposed.


Sign in / Sign up

Export Citation Format

Share Document