scholarly journals Determination of the Long Period Nutation Terms from Optical Astrometry and VLBI Data

2000 ◽  
Vol 178 ◽  
pp. 607-612
Author(s):  
P. Yaya ◽  
C. Bizouard ◽  
C. Ron

AbstractA 100-year long optical astrometric series of the Earth Orientation Parameters produced by a Czech team (Vondrák et al., 1998) has been analysed in order to determine components of nutation. Our interest is mostly focused on the long periodic terms: 18.6-year term, 9.3-year term and linear trend, still correlated in VLBI series which cover only the last 20 years. A comparison has been made with the corresponding values determined from the VLBI series.

1995 ◽  
Vol 166 ◽  
pp. 287-291
Author(s):  
Dennis D. McCarthy

Sub-milliarcsecond astrometry often requires an accurate characterization of the orientation of the Earth in a quasi-inertial reference frame. The International Earth Rotation Service (IERS) standards provide the current state of the art in the transformation between celestial and terrestrial reference systems. Improvements in the determination of Earth orientation parameters which describe this transformation continue to be made. Current and future capabilities are given.


2016 ◽  
Vol 101 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Agata Wielgosz ◽  
Monika Tercjak ◽  
Aleksander Brzeziński

Abstract Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.


2021 ◽  
Author(s):  
Vishwa Vijay Singh ◽  
Liliane Biskupek ◽  
Jürgen Müller ◽  
Mingyue Zhang

<p>The distance between the observatories on Earth and the retro-reflectors on the Moon has been regularly observed by the Lunar Laser Ranging (LLR) experiment since 1970. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the Moon, and a higher number of LLR observations in total. Providing the longest time series of any space geodetic technique for studying the Earth-Moon dynamics, LLR can also support the estimation of Earth orientation parameters (EOP), like UT1. The increased number of highly accurate LLR observations enables a more accurate estimation of the EOP. In this study, we add the effect of non-tidal station loading (NTSL) in the analysis of the LLR data, and determine post-fit residuals and EOP. The non-tidal loading datasets provided by the German Research Centre for Geosciences (GFZ), the International Mass Loading Service (IMLS), and the EOST loading service of University of Strasbourg in France are included as corrections to the coordinates of the LLR observatories, in addition to the standard corrections suggested by the International Earth Rotation and Reference Systems Service (IERS) 2010 conventions. The Earth surface deforms up to the centimetre level due to the effect of NTSL. By considering this effect in the Institute of Geodesy (IfE) LLR model (called ‘LUNAR’), we obtain a change in the uncertainties of the estimated station coordinates resulting in an up to 1% improvement, an improvement in the post-fit LLR residuals of up to 9%, and a decrease in the power of the annual signal in the LLR post-fit residuals of up to 57%. In a second part of the study, we investigate whether the modelling of NTSL leads to an improvement in the determination of EOP from LLR data. Recent results will be presented.</p>


2000 ◽  
Vol 178 ◽  
pp. 571-584
Author(s):  
Nicole Capitaine

AbstractThe current IAU conventional models for precession and nutation are referred to the Celestial Ephemeris Pole (CEP). However, the concept corresponding to the CEP is not clear and cannot easily be extended to the most recent models and observations. Its realization is actually dependent both on the model used for precession, nutation and polar motion and on the observational procedure for estimating the Earth orientation parameters. A new definition of the CEP should therefore be given in order to be in agreement with modern models and observations at a microarsecond level. This paper reviews the various realizations of the pole according to the models and observations and discusses the proposals for a modern definition of the CEP that are under consideration within the work of the subgroup T5 entitled “Computational Consequences” of the “ICRS” IAU Working Group.


1988 ◽  
Vol 128 ◽  
pp. 187-192 ◽  
Author(s):  
A. Mallama ◽  
T. A. Clark ◽  
J. W. Ryan

This study compares the earth orientation results obtained by the NASA CDP and the NGS IRIS experiments. The results agree at about one combined formal error (two milliarcseconds) after small biases (one to three milliarcseconds) have been removed from each component. Furthermore the biases are found to correspond to small rotations between the reference frames, principally the terrestrial frame, for the two sets of experiments. In the past the CDP data has not been used in combined solutions of earth orientation parameters prepared by the data centers at the U.S.N.O. and the B.I.H. The authors propose that these data should be included because they are distinct from the IRIS data and represent an important supplement to those data. We also point out that the total number of observations is about equal in the CDP and IRIS experiment sets.


2010 ◽  
Vol 84 (10) ◽  
pp. 587-596 ◽  
Author(s):  
M. Kalarus ◽  
H. Schuh ◽  
W. Kosek ◽  
O. Akyilmaz ◽  
Ch. Bizouard ◽  
...  

2021 ◽  
Vol 55 ◽  
pp. 23-31
Author(s):  
Markus Mikschi ◽  
Johannes Böhm ◽  
Matthias Schartner

Abstract. The International VLBI Service for Geodesy and Astrometry (IVS) is currently setting up a network of smaller and thus faster radio telescopes observing at broader bandwidths for improved determination of geodetic parameters. However, this new VLBI Global Observing System (VGOS) network is not yet strongly linked to the legacy S/X network and the International Terrestrial Reference Frame (ITRF) as only station WESTFORD has ITRF2014 coordinates. In this work, we calculated VGOS station coordinates based on publicly available VGOS sessions until the end of 2019 while defining the geodetic datum by fixing the Earth orientation parameters and the coordinates of the WESTFORD station in an unconstrained adjustment. This set of new coordinates allows the determination of geodetic parameters from the analysis of VGOS sessions, which would otherwise not be possible. As it is the concept of VGOS to use smaller, faster slewing antennas in order to increase the number of observations, shorter estimation intervals for the zenith wet delays and the tropospheric gradients along with different relative constraints were tested and the best performing parametrization, judged by the baseline length repeatability, was used for the estimation of the VGOS station coordinates.


1998 ◽  
Vol 11 (1) ◽  
pp. 553-553
Author(s):  
J. Vondrák ◽  
C. Ron ◽  
I. Pešek ◽  
A. Čepek

The optical astrometry observations of latitude/universal time variations made with 48 instruments at 31 observatories are used to determine the Earth orientation parameters (EOP) since the beginning of the century. The Hipparcos Catalogue is used to bring more than four million individual observations, made in the interval 1899.7-1992.0, into the International Celestial Reference System. The Earth orientation parameters (polar motion, celestial pole offsets and, since 1956.0, also universal time UT1) are determined at 5-day intervals, with average uncertainties ranging from 8 mas (in the eighties) to about 40 mas (in the forties). Making use of very long series of ground-based observations, the solution also leads to the improvement of proper motions of about ten per cent of the observed Hipparcos stars, with precision of ±0.2 — 0.5 mas/yr. In addition, 474 auxiliary parameters, describing the rheological properties of the Earth and seasonal deviations of the observations at contributing observatories, are found. The new solution provides the EOP series suitable for further analyses, e.g., for studying long-periodic polar motion, length-of-day changes or precession/nutation.


Sign in / Sign up

Export Citation Format

Share Document