scholarly journals Planetary Systems

1999 ◽  
Vol 172 ◽  
pp. 313-316
Author(s):  
Pawel Artymowicz

AbstractThe past decade brought direct evidence of the previously surmised exoplanetary systems. A variety of planetary system types exist those around pulsars, around both young and old main-sequence stars (as evidenced by planetesimal disks of the Beta Pictoris-type), and the mature giant exoplanets found in radial velocity surveys. The surprising diversity of the exoplanetary systems is addressed by several theories of their origin.

2019 ◽  
Vol 492 (1) ◽  
pp. 377-383 ◽  
Author(s):  
Robert A Wittenmyer ◽  
Songhu Wang ◽  
Jonathan Horner ◽  
R P Butler ◽  
C G Tinney ◽  
...  

ABSTRACT Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual – but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of ‘cool Jupiters’ – analogues to the Solar system’s giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters. We find that the occurrence rate of such ‘cool Jupiters’ is $6.73^{+2.09}_{-1.13}$ per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at $0.84^{+0.70}_{-0.20}$ per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ∼1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system’s place in the cosmos.


2013 ◽  
Vol 8 (S299) ◽  
pp. 328-329
Author(s):  
Amy Bonsor ◽  
Grant M. Kennedy ◽  
Justin R. Crepp ◽  
John A. Johnson ◽  
Mark C. Wyatt ◽  
...  

AbstractWhilst debris discs orbiting main-sequence stars are well studied, very little is known regarding their fate when the star evolves onto the giant branch. For intermediate mass (A-type) stars, giants provide a unique opportunity to detect planets using the radial velocity technique, otherwise prohibited by high jitter levels and rotationally broadened lines in main-sequence intermediate mass (A-type) stars. Such stars can provide key insights into the structure of planetary systems around intermediate mass stars. In our Herschel OT1 program (PI Bonsor) we searched for the presence of debris discs orbiting a sample of 36 subgiants, half of which have RV detected companions. Our best detection is the resolved debris disc orbiting κ CrB.


2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


2009 ◽  
Vol 5 (S268) ◽  
pp. 387-394
Author(s):  
Sylvie Vauclair

AbstractAsteroseismology is a powerful tool to derive stellar parameters, including the helium content and internal helium gradients, and the macroscopic motions which can lead to lithium, beryllium, and boron abundance variations. Precise determinations of these parameters need deep analyses for each individual stars. After a general introduction on helio and asteroseismology, I first discuss the solar case, the results which have been obtained in the past two decades, and the crisis induced by the new determination of the abundances of heavy elements. Then I discuss asteroseismology in relation with light element abundances, especially for the case of main sequence stars.


2001 ◽  
Vol 200 ◽  
pp. 165-168 ◽  
Author(s):  
Eike W. Guenther ◽  
Viki Joergens ◽  
Ralph Neuhäuser ◽  
Guillermo Torres ◽  
Natalie Stout Batalha ◽  
...  

We give here an overview of the current state of our survey for pre-main sequence spectroscopic binaries. Up to now we have taken 739 spectra of 250 pre-main sequence stars. We find that 8% of the stars show significant radial velocity variations, and are thus most likely spectroscopic binaries. In addition to the targets showing radial velocity variations, 6% of the targets are double-lined spectroscopic binaries i.e., the total fraction of spectroscopic binaries is expected to be about 14%. All short-period SB2s are monitored photometrically in order to search for eclipses. An eclipsing SB2 would allow the direct measurement of the masses of both stellar components. Measurements of the stellar masses together with determinations of the stellar radii are a crucial test of evolutionary tracks of pre-main sequence stars.


2018 ◽  
Vol 616 ◽  
pp. A155 ◽  
Author(s):  
A. F. Lanza ◽  
L. Malavolta ◽  
S. Benatti ◽  
S. Desidera ◽  
A. Bignamini ◽  
...  

Aims. Stellar activity is the ultimate source of radial-velocity (hereinafter RV) noise in the search for Earth-mass planets orbiting late-type main-sequence stars. We analyse the performance of four different indicators and the chromospheric index log R′HK in detecting RV variations induced by stellar activity in 15 slowly rotating (υ sin i ≤ 5 km s−1), weakly active (log R′HK ≤ −4.95) solar-like stars observed with the high-resolution spectrograph High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N). Methods. We consider indicators of the asymmetry of the cross-correlation function (CCF) between the stellar spectrum and the binary weighted line mask used to compute the RV, that is the bisector inverse span (BIS), ΔV, and a new indicator Vasy(mod) together with the full width at half maximum (FWHM) of the CCF. We present methods to evaluate the uncertainties of the CCF indicators and apply a kernel regression (KR) between the RV, the time, and each of the indicators to study their capability of reproducing the RV variations induced by stellar activity. Results. The considered indicators together with the KR prove to be useful to detect activity-induced RV variations in ~47 ± 18 percent of the stars over a two-year time span when a significance (two-sided p-value) threshold of one percent is adopted. In those cases, KR reduces the standard deviation of the RV time series by a factor of approximately two. The BIS, the FWHM, and the newly introduced Vasy(mod) are the best indicators, being useful in 27 ± 13, 13 ± 9, and 13 ± 9 percent of the cases, respectively. The relatively limited performances of the activity indicators are related to the very low activity level and υ sin i of the considered stars. For the application of our approach to sun-like stars, a spectral resolution allowing λ/Δλ ≥ 105 and highly stabilized spectrographs are recommended.


2010 ◽  
Vol 6 (S276) ◽  
pp. 54-59
Author(s):  
Amaya Moro-Martín

AbstractMain sequence stars are commonly surrounded by disks of dust. From lifetime arguments, it is inferred that the dust particles are not primordial but originate from the collision of planetesimals, similar to the asteroids, comets and KBOs in our Solar system. The presence of these debris disks around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. Debris disks can help us learn about the formation, evolution and diversity of planetary systems.


2004 ◽  
Vol 202 ◽  
pp. 462-464
Author(s):  
James P. Lloyd ◽  
Michael C. Liu ◽  
James R. Graham ◽  
Melissa Enoch ◽  
Paul Kalas ◽  
...  

We have undertaken an adaptive optics imaging survey of extra-solar planetary systems and stars showing interesting radial velocity trends from high precision radial velocity searches. Adaptive Optics increases the resolution and dynamic range of an image, substantially improving the detectability of faint close companions. This survey is sensitive to objects less luminous than the bottom of the main sequence at separations as close as 1″. We have detected stellar companions to the planet bearing stars HD 114762 and Tau Boo. We have also detected a companion to the non-planet bearing star 16 Cyg A.


2014 ◽  
Vol 23 (2) ◽  
Author(s):  
H. V. Şenavcı ◽  
M. Yılmaz ◽  
Ö. Baştürk ◽  
İ. Özavcı ◽  
Ş. Çalışkan ◽  
...  

AbstractWe present the simultaneous light and radial velocity curve analysis of two contact binaries in Pegasus using the Wilson-Devinney code. The following absolute astrophysical parameters are determined: masses, radii and effective temperatures. BB Peg is a W-subtype W UMa-type binary, components of which are main sequence stars with 0.50


Sign in / Sign up

Export Citation Format

Share Document