scholarly journals The Population of Debris Discs Orbiting Subgiants

2013 ◽  
Vol 8 (S299) ◽  
pp. 328-329
Author(s):  
Amy Bonsor ◽  
Grant M. Kennedy ◽  
Justin R. Crepp ◽  
John A. Johnson ◽  
Mark C. Wyatt ◽  
...  

AbstractWhilst debris discs orbiting main-sequence stars are well studied, very little is known regarding their fate when the star evolves onto the giant branch. For intermediate mass (A-type) stars, giants provide a unique opportunity to detect planets using the radial velocity technique, otherwise prohibited by high jitter levels and rotationally broadened lines in main-sequence intermediate mass (A-type) stars. Such stars can provide key insights into the structure of planetary systems around intermediate mass stars. In our Herschel OT1 program (PI Bonsor) we searched for the presence of debris discs orbiting a sample of 36 subgiants, half of which have RV detected companions. Our best detection is the resolved debris disc orbiting κ CrB.

2009 ◽  
Vol 5 (H15) ◽  
pp. 815-815
Author(s):  
Antonio S. Hales ◽  
Michael J. Barlow ◽  
Janet E. Drew ◽  
Yvonne C. Unruh ◽  
Robert Greimel ◽  
...  

AbstractThe Isaac Newton Photometric H-Alpha Survey (IPHAS) provides (r′-Hα)-(r′-i′) colors, which can be used to select AV0-5 Main Sequence star candidates (age~20-200 Myr). By combining a sample of 23050 IPHAS-selected A-type stars with 2MASS, GLIMPSE and MIPSGAL photometry we searched for mid-infrared excesses attributable to dusty circumstellar disks. Positional cross-correlation yielded a sample of 2692 A-type stars, of which 0.6% were found to have 8-μm excesses above the expected photospheric values. The low fraction of main sequence stars with mid-IR excesses found in this work indicates that dust disks in the terrestrial planet zone of Main Sequence intermediate mass stars are rare. Dissipation mechanisms such as photo-evaporation, grain growth, collisional grinding or planet formation could possibly explain the depletion of dust detected in the inner regions of these disks.


2019 ◽  
Vol 491 (4) ◽  
pp. 5248-5257 ◽  
Author(s):  
Robert A Wittenmyer ◽  
R P Butler ◽  
Jonathan Horner ◽  
Jake Clark ◽  
C G Tinney ◽  
...  

ABSTRACT Our knowledge of the populations and occurrence rates of planets orbiting evolved intermediate-mass stars lags behind that for solar-type stars by at least a decade. Some radial velocity surveys have targeted these low-luminosity giant stars, providing some insights into the properties of their planetary systems. Here, we present the final data release of the Pan-Pacific Planet Search (PPPS), a 5 yr radial velocity survey using the 3.9 m Anglo-Australian Telescope. We present 1293 precise radial velocity measurements for 129 stars, and highlight 6 potential substellar-mass companions, which require additional observations to confirm. Correcting for the substantial incompleteness in the sample, we estimate the occurrence rate of giant planets orbiting low-luminosity giant stars to be approximately 7.8$^{+9.1}_{-3.3}$ per cent. This result is consistent with the frequency of such planets found to orbit main-sequence A-type stars, from which the PPPS stars have evolved.


1999 ◽  
Vol 172 ◽  
pp. 313-316
Author(s):  
Pawel Artymowicz

AbstractThe past decade brought direct evidence of the previously surmised exoplanetary systems. A variety of planetary system types exist those around pulsars, around both young and old main-sequence stars (as evidenced by planetesimal disks of the Beta Pictoris-type), and the mature giant exoplanets found in radial velocity surveys. The surprising diversity of the exoplanetary systems is addressed by several theories of their origin.


2004 ◽  
Vol 215 ◽  
pp. 431-437
Author(s):  
S. C. Wolff ◽  
S. E. Strom ◽  
L. A. Hillenbrand

Measurements of stars in the Orion OB association show that there is a continuous power law relationship between specific angular momentum (J/M) and mass (M) for stars on convective tracks having masses in the range ~0.5 to ~3 M⊙; this power law extends smoothly into the domain of more massive stars on the ZAMS. If we assume that stars are “locked” to circumstellar accretion disks via their magnetic fields until they are deposited on the stellar birthline, we can account for the observed slope and zero point of the power law fit to the upper envelope of the observed J/M vs M distribution.Pre-main sequence stars with M<2 M⊙ on radiative tracks do not follow the power law relationship. A sharp decrease in J/M with decreasing mass has been recognized for more than 30 years for older field stars, but remarkably is seen already among our Orion sample of stars that are only a few million years old. We show that this break in the power law is a consequence of loss of angular momentum on convective tracks, combined with core-envelope decoupling at the time of the transition from the convective to radiative tracks.


2020 ◽  
Vol 640 ◽  
pp. A49
Author(s):  
R.-M. Ouazzani ◽  
F. Lignières ◽  
M.-A. Dupret ◽  
S. J. A. J. Salmon ◽  
J. Ballot ◽  
...  

The advent of space photometry with CoRoT and Kepler has allowed for the gathering of exquisite and extensive time series for a wealth of main-sequence stars, including γ Doradus stars, whose detailed seismology was not achievable from the ground. γ Doradus stars present an incredibly rich pulsation spectra, with gravito-inertial modes, in some cases supplemented with δ Scuti-like pressure modes – for the hybrid stars – and, in many cases, with Rossby modes. The present paper aims to show that in addition to these modes which have been established in the radiative envelope, pure inertial modes that are trapped in the convective core can be detected in Kepler observations of γ Doradus stars thanks to their resonance with the gravito-inertial modes. We started by using a simplified model of perturbations in a full sphere of uniform density. Under these conditions, the spectrum of pure inertial modes is known from analytical solutions of the so-called Poincaré equation. We then computed coupling factors, which helped select the pure inertial modes which interact best with the surrounding dipolar gravito-inertial modes. Using complete calculations of gravito-inertial modes in realistic models of γ Doradus stars, we are able to show that the pure inertial and gravito-inertial resonances appear as “dips” in the gravito-inertial mode period spacing series at spin parameters that are close to those predicted by the simple model. We find the first evidence of such dips in the Kepler γ Doradus star KIC 5608334. Finally, using complete calculations in isolated convective cores, we find that the spin parameters of the pure inertial and gravito-inertial resonances are also sensitive to the density stratification of the convective core. In conclusion, we have discovered that certain dips in gravito-inertial mode period spacings that have been observed in some Kepler stars are, in fact, signatures of resonances with pure-inertial modes that are trapped in the convective core. This holds the promise that it would be possible to finally access the central conditions, namely, the rotation and density stratification, of intermediate-mass stars in the main sequence.


Solar Physics ◽  
1990 ◽  
Vol 128 (1) ◽  
pp. 287-298 ◽  
Author(s):  
C. Vigneron ◽  
A. Mangeney ◽  
C. Catala ◽  
E. Schatzman

1993 ◽  
Vol 137 ◽  
pp. 410-425 ◽  
Author(s):  
A. Noels ◽  
N. Grevesse

AbstractWe present the standard models for small and intermediate main sequence stars and we discuss some of the problems arising with semiconvection and overshooting. The surface abundance of Li serves as a test for other physical mechanisms, including microscopic and turbulent diffusion, rotation and mass loss.


2004 ◽  
Vol 215 ◽  
pp. 579-588 ◽  
Author(s):  
Georges Meynet ◽  
Max Pettini

We use the rotating stellar models described in the paper by A. Maeder & G. Meynet in this volume to consider the effects of rotation on the evolution of the most massive stars into and during the Wolf–Rayet phase, and on the post-Main Sequence evolution of intermediate mass stars. The two main results of this discussion are the following. First, we show that rotating models are able to account for the observed properties of the Wolf–Rayet stellar populations at solar metallicity. Second, at low metallicities, the inclusion of stellar rotation in the calculation of chemical yields can lead to a longer time delay between the release of oxygen and nitrogen into the interstellar medium following an episode of star formation, since stars of lower masses (compared to non-rotating models) can synthesize primary N. Qualitatively, such an effect may be required to explain the relative abundances of N and O in extragalactic metal–poor environments, particularly at high redshifts.


2020 ◽  
Vol 493 (4) ◽  
pp. 4987-5004 ◽  
Author(s):  
George C Angelou ◽  
Earl P Bellinger ◽  
Saskia Hekker ◽  
Alexey Mints ◽  
Yvonne Elsworth ◽  
...  

ABSTRACT Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries, and single stars alike. We compute ‘effective overshoot’ measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and α Cen A). Collectively, these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures, we find that the ‘effective overshoot’ for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.


2001 ◽  
Vol 200 ◽  
pp. 165-168 ◽  
Author(s):  
Eike W. Guenther ◽  
Viki Joergens ◽  
Ralph Neuhäuser ◽  
Guillermo Torres ◽  
Natalie Stout Batalha ◽  
...  

We give here an overview of the current state of our survey for pre-main sequence spectroscopic binaries. Up to now we have taken 739 spectra of 250 pre-main sequence stars. We find that 8% of the stars show significant radial velocity variations, and are thus most likely spectroscopic binaries. In addition to the targets showing radial velocity variations, 6% of the targets are double-lined spectroscopic binaries i.e., the total fraction of spectroscopic binaries is expected to be about 14%. All short-period SB2s are monitored photometrically in order to search for eclipses. An eclipsing SB2 would allow the direct measurement of the masses of both stellar components. Measurements of the stellar masses together with determinations of the stellar radii are a crucial test of evolutionary tracks of pre-main sequence stars.


Sign in / Sign up

Export Citation Format

Share Document