scholarly journals Observations of Compact X-Ray Sources

1986 ◽  
Vol 89 ◽  
pp. 198-221
Author(s):  
Y. Tanaka

This paper reviews the present status of observations of compact X-ray sources with emphasis on the aspects related to radiation hydrodynamics, based on the recent observational results, in particular those from the Japanese X-ray astronomy satellite Tenma. The main feature of Tenma is a large-area gas scintillation proportional counters (GSPC) with energy resolution twice that of ordinary proportional counters, which can yield information on energy spectrum superior in quality to previous results. We shall deal here only with those galactic X-ray sources in which the compact object is a neutron star or possibly a black hole, and exclude white dwarf sources.There exist more than one hundred bright X-ray sources in our galaxy in the luminosity range 1036−1038 ergs/sec. They are most probably binaries involving a neutron star or, in some cases, possibly a black hole. The high luminosities of these sources are explained in terms of the large gravitaional energy release by matter accreting from the companion star to the compact object.

Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2019 ◽  
Vol 489 (1) ◽  
pp. 282-296 ◽  
Author(s):  
M J Middleton ◽  
P C Fragile ◽  
A Ingram ◽  
T P Roberts

ABSTRACT Identifying the compact object in ultraluminous X-ray sources (ULXs) has to date required detection of pulsations or a cyclotron resonance scattering feature (CRSF), indicating a magnetized neutron star. However, pulsations are observed to be transient and it is plausible that accretion on to the neutron star may have suppressed the surface magnetic field such that pulsations and CRSFs will be entirely absent. We may therefore lack direct means to identify neutron star systems whilst we presently lack an effective means by which to identify black hole ULXs. Here we present a possible method for separating the ULX population by assuming the X-ray, mHz quasi-periodic oscillations (QPOs), and day time-scale periods/QPOs are associated with Lense–Thirring precession of the inflow and outflowing wind, respectively. The precession time-scales combined with the temperature of the soft X-ray component produce planes where the accretor mass enters as a free parameter. Depending on the properties of the wind, use of these planes may be robust to a range in the angular momentum (spin) and, for high accretion rates, essentially independent of the neutron star’s surface dipole field strength. Our model also predicts the mHz QPO frequency and magnitude of the phase lag imprinted due to propagation through the optically thick wind; in the case of NGC 5408 X-1 we subsequently infer a black hole mass and moderate-to-high spin. Finally, we note that observing secular QPO evolution over sufficient baselines may indicate a neutron star, as the precession responds to spin-up which is not readily observable for black hole primaries.


2004 ◽  
Vol 194 ◽  
pp. 204-204
Author(s):  
J. I. González-Hernández ◽  
R. Rebolo ◽  
G. Israelian ◽  
J. Casares

We have determined abundances in the secondary stars of the black hole X-ray binary A0620-00 and the neutron star Binary Cen X-4. These are K type stars veiled by the emission produced by the respective accretion discs. We searched for evidence of nucleosynthetic products from the progenitor of the compact object that could have contaminated the secondary stars (as in Israelian et al., 1999).Using high resolution spectra obtained with VLT/UVES, we have derived in a consistent way stellar parameters and the veiling caused by the accretion disc.


The high luminosity galactic X-ray sources, apart from the supernovae remnants, probably all exist in multiple star systems in which matter from a normal star is being transferred to a compact object such as a white dwarf, neutron star or black hole. Recent results, obtained with the Ariel 5 and Copernicus satellites, are presented. A number of sources have been studied over extended periods in order to measure the regular periodicities in their X-ray emission. Observations also included are of the Cygnus X-1 source, which is probably the first black hole discovered in our galaxy. X-ray emission, coincident with a radio outburst, from a nearby bright star HR1099 is also reported.


2021 ◽  
Author(s):  
Dheeraj Pasham ◽  
Wynn Ho ◽  
William Alston ◽  
Ronald Remillard ◽  
Mason Ng ◽  
...  

Abstract Fast Blue Optical Transients (FBOTs) are mysterious extragalactic explosions that may represent a new class of astrophysical phenomena. Their fast time to maximum brightness of less than 10 days and decline over less than 2 months and unusual optical spectra and evolution are difficult to explain within the context of core-collapse of massive stars which are powered by radioactive decay of Nickel-56 and evolve slowly on months timescales. AT2018cow (at a redshift of 0.014) is an extreme FBOT both in terms of rapid evolution and high X-ray and bolometric luminosities. Several alternative hypotheses have been proposed to explain its unusual properties. These include shock interactions with dense circumstellar medium, tidal disruption of a star by a 10,000−million solar mass black hole, failed supernova with fallback accretion onto a newborn black hole, neutron star formed in a supernova or from merging compact objects, etc. Here, we present evidence for a high-amplitude (fractional root-mean-squared amplitude of>30%) quasi-periodic oscillation (QPO) of AT2018cow’s soft X-rays with a centroid frequency of roughly 225 Hz (statistically significant at the 3.7-sigma level, or a false alarm probability of 0.02%). This signal is found in the average power density spectrum of data taken over the entire outburst lasting roughly 60 days and thus suggests that the signal is highly persistent over several hundreds of millions of cycles (60 daysx225 Hz). This high frequency (rapid timescale) of 225 Hz (4.4 ms) argues for the presence of a compact object in AT2018cow which can either be a neutron star or a black hole, and disfavors circumstellar medium interactions for the origin of X-ray emission. Also, the QPO’s timescale sets an upper limit on the compact object's mass to be 850 solar masses, and thus disfavors models with a heavier black hole. If the QPO represents the spin period of a neutron star we can set upper limits on its magnetic field under different scenarios. This work highlights a new way of using high time-resolution X-ray observations to study FBOTs.


2004 ◽  
Vol 194 ◽  
pp. 214-214
Author(s):  
Dawn M. Gelino

Low-mass X-ray binaries (LMXBs) contain compact, black hole (BH) or neutron star (NS) primaries, and cool, low-mass secondary stars. We measure the orbital inclination of the system in quiescence by modeling infrared (IR) ellipsoidal variations from the secondary star in order to determine the compact object mass. I present our results for a few LMXBs, including the first BH that appears to conclusively fall in the 3-5 M⊙ range.


1974 ◽  
Vol 60 ◽  
pp. 407-409
Author(s):  
C. G. Wynn-Williams

The 2.2 µm flux from the infrared counterpart of Cygnus X-3 has been found to vary in phase with the X-ray flux with a 4.8 h period. The infrared observations imply a radius ~ 1 R⊙ for the X-ray object and do not favor models involving a compact object such as a neutron star or a black hole.


2018 ◽  
Vol 619 ◽  
pp. L4 ◽  
Author(s):  
M. G. Bowler

Context. The unique Galactic microquasar SS 433 is an X-ray binary with a 13.08 day orbital period. Over some forty years, estimates of the mass of the compact object have spanned the range 1–30 solar masses; from neutron star to massive stellar black hole. Aims. To fix the mass ratio q and hence the mass of the super-Eddington accretor. Methods. We present a new and robust estimate of q derived from data on the circumbinary disk and compare it with a recent determination from the observed constancy of the binary period. Results. These two robust analyses agree to a remarkable extent. They reinforce each other; q is ∼0.7 and the mass of the compact object 15 ± 2 M⊙. Conclusions. The mass is such as to identify the compact object as a massive stellar black hole.


1987 ◽  
Vol 125 ◽  
pp. 149-159
Author(s):  
Ginevra Trinchieri

The X-ray observations of the Milky Way galaxy with non-imaging X-ray satellites (e.g. UHURU, HEAO1) has revealed a number of discrete, point -like bright sources clustered around the Galaxy's center (in the bulge region) and on the plane of the Galaxy (see for example Tanambaum and Tucker, 1984). The brightermost ones have been associated with close accreting binary systems, containing an evolved object (a white dwarf, a neutron star or a black hole) and a companion visible star. For sources with X-ray luminosities Lx≦1038 erg s−1, the compact object needs to be a neutron star or a black hole.


2006 ◽  
Vol 2 (S238) ◽  
pp. 219-224
Author(s):  
P. A. Charles ◽  
A. D. Barnes ◽  
J. Casares ◽  
J. S. Clark ◽  
R. Cornelisse ◽  
...  

AbstractThe prototypical micro-quasar, SS433, one of the most bizarre objects in the Galaxy, is a weak X-ray source, yet the kinetic energy of its relativistic, precessing jets is vastly greater. In spite of its importance as the nearest example of directly observable relativistic phenomena, we know remarkably little about the nature of this binary system. There are ongoing arguments not only about the mass of the compact object, but even as to whether it is a black hole or a neutron star, an argument that recent high resolution optical spectroscopy has contributed to.Combined with the INTEGRAL discovery of a new class of highly obscured galactic high-mass X-ray binaries, one of which has been found to precess on a similar timescale to SS433, we suggest that these would indeed be seen by external observers as ULXs, once additional effects such as beaming (either relativistic or geometrical) are included.


Sign in / Sign up

Export Citation Format

Share Document