scholarly journals Absolute Dimensions of Algol Binary Systems

1989 ◽  
Vol 107 ◽  
pp. 341-342
Author(s):  
J.M. Garcia ◽  
A. Gimenez

In order to check the evolutionary status and theoretical models of eclipsing binaries of Algol type, a reliable determination of their absolute dimensions is needed. In this communication, we compare the most commonly used methods to derive absolute parametors in single-lined aclipsing binaries. Let us first assume that the mass function, f(m), is known from the analysis of the radial velocity curve while the relative radii and orbital inclination are derived from the light curve. The determination of absolute parameters is then equivalent to the obtention of the mass ratio, q = m2/m1. The following methods are available to estimate q from observed parameters — over-all errors being estimated for observational uncertainties of the order of 5 % in relative radii and temperatures and 15 % in f(m) —:1.qs: It is assumed that the primary component follows the mass-luminosity relation for main-sequence stars. This procedure provides qs with an uncertainty of about 10 %.2.qsD: It is assumed that the secondary component fills its Roche lobe. Errors of at least 15 to 20 % are expected from this procedure mainly due to its high sensitivity to small variations in the observed value of r2, particularly if r2 > 0.2.Both methods can be used together when f(m) is doubtful, or completely unknown, but errors can not be expected to be better than in case 2.3.qn: It is assumed that the primary component rotates synchronously in a circular orbit. This assumption is difficult to adopt due to the expected transfer of angular momentum through mass transfer and the value of qn is estimated with about 20 to 30 % error.4.qED: It is assumed that the primary component, is well reproduced by standard evolutionary models within the main sequence. Adopting a grid of models for a given chemical composition, an iterative procedure in the log Ti,.–log g plane permits the determination of m1 and thus q. This method is equivalent to (1) but avoids errors due to evolution from the ZAMS to the TAMS, not taken into account in the previous method, and allows to reach a higher accuracy, around 5 %, except for those primary stars located around the TAMS, where the determination of mi is not unique.

2011 ◽  
Vol 28 (1) ◽  
pp. 66-76 ◽  
Author(s):  
M. Yıldız

AbstractBinary systems, in particular eclipsing binaries, are essential sources of knowledge of the fundamental properties of stars. The ages of binaries, members of open clusters, are constrained by their own fundamental properties and by those of the hosting cluster. The ages of eleven open clusters are here found by constructing models for the components of twelve eclipsing binaries. The difference between the ages we find and the ages of the clusters derived from isochrone fitting is up to 40%. For the binary system V497 Cep in NGC 7160, the difference is about 100%. Binary systems whose primary component is about to complete its main-sequence lifetime, such as V453 Cyg and V906 Sco, are the most suitable systems for age determination. Using model results for these stars, we derive an expression for sensitive and uncomplicated relative age determination of binary systems (age divided by the main-sequence lifetime of the primary star). The expression is given as a logarithm of radii ratio divided by a logarithm of mass ratio. Two advantages of this expression are that: (i) it is nearly independent of the assumed chemical composition of the models because of the appearance of the ratio of radii; and (ii) the ratios of radii and masses are observationally much more precise than their absolute values. We also derive another expression using luminosities rather than radii and compare results.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


1988 ◽  
Vol 108 ◽  
pp. 217-218
Author(s):  
Masatoshi Kitamura ◽  
Yasuhisa Nakamura

The ordinary semi-detached close binary system consists of a main-sequence primary and subgiant (or giant) secondary component where the latter fills the Roche lobe. From a quantitative analysis of the observed ellipticity effect, Kitamura and Nakamura (1986) have deduced empirical values of the exponent of gravity-darkening for distorted main-sequence stars in detached systems and found that the empirical values of the exponent for these stars with early-type spectra are close to the unity, indicating that the subsurface layers of early-main sequence stars in close binaries are actually in radiative equilibrium. The exponent of gravity-darkening can be defined by H ∝ gα with H as the bolonetric surface brightness and g as the local gravity on the stellar surface.


1984 ◽  
Vol 105 ◽  
pp. 419-420
Author(s):  
Alvaro Giménez

The study of apsidal motions in eclipsing binaries has proven to be one of the best methods to check the internal density concentrations of the stars predicted by theoretical models. During the main sequence phase, we have found a good agreement between the observed apsidal motion rates and computer-constructed stellar models provided that a realistic consideration is made of the evolution between the lower and upper borders of the main sequence (Giménez and García-Pelayo, 1982). An obvious extension of this work is a throughout study of the more evolved evolved systems beyond the TAMS where theoretical models are less accurate and empirical data from different sources are largely needed (see review paper by Zahn in this volume). A preliminary report on such a study is presented.


2020 ◽  
Vol 493 (2) ◽  
pp. 2659-2675
Author(s):  
Derya Sürgit ◽  
Ahmet Erdem ◽  
Chris A Engelbrecht ◽  
Fred Marang

ABSTRACT We present combined photometric and spectroscopic analyses of the three southern eclipsing binary stars: DQ Car, BK Ind, and V4396 Sgr. Radial velocity curves of these three systems were obtained at the South African Astronomical Observatory, and their light curves from the available data bases and surveys were used for the analysis. 75 new times of minima for these three eclipsing binaries were derived, and their ephemerides were updated. Only the O–C diagram of DQ Car indicates a cyclical variation, which was interpreted in terms of the light-time effect due to a third body in the system. Our final models describe these three systems as Algol-like binary stars with detached configurations. The masses and radii were found to be M1 = 1.86(±0.17) M⊙, R1 = 1.63(±0.06) R⊙ and M2 = 1.74(±0.17) M⊙, R2 = 1.52(±0.07) R⊙ for the primary and secondary components of DQ Car; M1 = 1.16(±0.05) M⊙, R1 = 1.33(±0.03) R⊙ and M2 = 0.98(±0.04) M⊙, R2 = 1.00(±0.03) R⊙ for BK Ind; and M1 = 3.14(±0.22) M⊙, R1 = 3.00(±0.09) R⊙ and M2 = 3.13(±0.24) M⊙, R2 = 2.40(±0.08) R⊙ for V4396 Sgr, respectively. The distances to DQ Car, BK Ind, and V4396 Sgr were derived to be 701(±50), 285(±20), and 414(±30) pc from the distance modulus formula, taking into account interstellar extinction. The evolutionary status of these three systems was also studied. It has been found that the components of DQ Car are very young stars at the age of ∼25 Myr and those of BK Ind and V4396 Sgr are evolved main-sequence stars at the ages of ∼2.69 Gyr and ∼204 Myr, respectively.


2005 ◽  
Vol 277-279 ◽  
pp. 869-875
Author(s):  
Hwihyun Kim ◽  
Yong Ik Byun

We present the result of photometric variability investigation for stars in the field of M67. The old open cluster M67, one of the most studied open clusters, shows the sign of significant main-sequence binary population in its color-magnitude diagrams. Identification of eclipsing binaries and follow-up studies will enable us to study the nature of binary population in most direct manner. We used approximately 350 images from the BATC (Beijing-Arizona-Taipei-Connecticut) data archive to examine variability within one square degree field centered on M67. A total of 18 stars were classified to be real variables. Our new discoveries include seven eclipsing binary systems of which two are likely to be W UMa systems. All of these variables were found using the phase dispersion minimization (PDM) method developed by Shin and Byun[11].


2018 ◽  
Vol 616 ◽  
pp. A49 ◽  
Author(s):  
T. Pribulla ◽  
A. Mérand ◽  
P. Kervella ◽  
C. Cameron ◽  
C. Deen ◽  
...  

Context. V923 Sco is a bright (V = 5.91), nearby (π = 15.46 ± 0.40 mas) southern eclipsing binary. Because both components are slow rotators, the minimum masses of the components are known with 0.2% precision from spectroscopy. The system seems ideal for very precise mass, radius, and luminosity determinations and, owing to its proximity and long orbital period (~34.8 days), promises to be resolved with long-baseline interferometry. Aims. The principal aim is very accurate determinations of absolute stellar parameters for both components of the eclipsing binary and a model-independent determination of the distance. Methods. New high-precision photometry of both eclipses of V923 Sco with the MOST satellite was obtained. The system was spatially resolved with the VLTI AMBER, PIONIER, and GRAVITY instruments at nine epochs. Combining the projected size of the spectroscopic orbit (in km) and visual orbit (in mas) the distance to the system is derived. Simultaneous analysis of photometric, spectroscopic, and interferometric data was performed to obtain a robust determination of the absolute parameters. Results. Very precise absolute parameters of the components were derived in spite of the parameter correlations. The primary component is found to be overluminous for its mass. Combining spectroscopic and interferometric observations enabled us to determine the distance to V923 Sco with better than 0.2% precision, which provides a stringent test of Gaia parallaxes. Conclusions. It is shown that combining spectroscopic and interferometric observations of nearby eclipsing binaries can lead to extremely accurate parallaxes and stellar parameters.


2008 ◽  
Vol 4 (S256) ◽  
pp. 57-62
Author(s):  
Pierre L. North ◽  
Romain Gauderon ◽  
Frédéric Royer

AbstractA sample of 33 eclipsing binaries observed in a field of the SMC with FLAMES@VLT is presented. The radial velocity curves obtained, together with existing OGLE light curves, allowed the determination of all stellar and orbital parameters of these binary systems. The mean distance modulus of the observed part of the SMC is 19.05 mag, based on the 26 most reliable systems. Assuming an average error of 0.1 mag on the distance modulus to an individual system, and a gaussian distribution of the distance moduli, we obtain a 2-σ depth of 0.36 mag or 10.6 kpc. Some results on the kinematics of the binary stars and of the H ii gas are also given.


1980 ◽  
Vol 88 ◽  
pp. 109-114
Author(s):  
Th.J. Van Der Linden

Numerical simulations of close binary evolution were performed for five binary systems, using a newly developed evolutionary program. The systems have masses 3+2, 4+3.2, 6+4, 9+6, 12+8 M⊙ and periods 2d, 1d78, 3d, 4d, 5d respectively. The primary component was followed from the zero-age main sequence through the mass transfer phase to core-helium burning. Special care was given to the self-consistent determination of the mass transfer rate and the detailed treatment of composition changes. After the mass transfer phase the resulting systems consist of a main sequence star with a helium star companion of mass 0.36, 0.46, 0.82, 1.48, 2.30 M⊙ for the five systems respectively. Interesting “thermal pulses” were found in the 3+2 M⊙ system at the onset of helium burning.


2010 ◽  
Vol 6 (S272) ◽  
pp. 515-516
Author(s):  
Eugenia Koumpia ◽  
Alceste Z. Bonanos

AbstractWesterlund 1 is one of the most massive young clusters known in the Local Group, with an age of 3-5 Myr. It contains an assortment of rare evolved massive stars, such as blue, yellow and red supergiants, Wolf-Rayet stars, a luminous blue variable, and a magnetar, as well as 4 massive eclipsing binary systems (Wddeb, Wd13, Wd36, WR77o, see Bonanos 2007). The eclipsing binaries present a rare opportunity to constrain evolutionary models of massive stars, the distance to the cluster and furthermore, to determine a dynamical lower limit for the mass of a magnetar progenitor. Wddeb, being a detached system, is of great interest as it allows determination of the masses of 2 of the most massive unevolved stars in the cluster. We have analyzed spectra of all 4 eclipsing binaries, taken in 2007-2008 with the 6.5 meter Magellan telescope at Las Campanas Observatory, Chile, and present fundamental parameters (masses, radii) for their component stars.


Sign in / Sign up

Export Citation Format

Share Document