scholarly journals UV time-dependent emission in SY Muscae

1982 ◽  
Vol 70 ◽  
pp. 191-194
Author(s):  
A.G. Michalitsianos ◽  
M. Kafatos

Ultraviolet spectra acquired with the International Ultraviolet Explorer (IUE) of SY Mus = HD 10036 on 20 September 1980 and 11 June 1981 indicate a substantial enhancement of UV emission over a nine month period. The general UV flux level appears to have increased by approximately one order of magnitude between the first and second observing epochs. The strong ultraviolet continuum evident throughout the entire IUE spectral range λλ1200-3200 A on 11 June 1981 is closely approximated by a star with Teff = 40,000 K, where previously on 20 September 1980 the continuum distribution presented a more complex structure that is possibly explained by a combination of thermal emission from an early type main sequence star, and nebular recombination emission (Michalitsianos et al. 1981).

1994 ◽  
Vol 159 ◽  
pp. 403-403
Author(s):  
G.A. Reichert

On behalf of the International AGN Watch, I report on the results of intensive ultraviolet spectral monitoring of the Seyfert 1 galaxy NGC 3783. The nucleus of NGC 3783 was observed with the International Ultraviolet Explorer satellite on a regular basis for a total of seven months, once every 4 days for the first 172 days and once every other day for the final 50 days. Significant variability was observed in both continuum and emission-line fluxes. The light curves for the continuum fluxes exhibited two well-defined local minima or “dips,” the first lasting ≲ 20 days and the second ≲ 4 days, with additional episodes of relatively rapid flickering of approximately the same amplitude. As in the case of NGC 5548 (the only other Seyfert galaxy that has been the subject of such an intensive, sustained monitoring effort), the largest continuum variations were seen at the shortest wavelengths, so that the continuum became “harder” when brighter. The variations in the continuum occurred simultaneously at all wavelengths (Δt < 2 days). Generally, the amplitude of variability of the emission lines was lower than (or comparable to) that of the continuum. Apart from Mg II (which varied little) and N V (which is relatively weak and badly blended with Lyα) the light curves of the emission lines are very similar to the continuum light curves, in each case with a small systematic delay or “lag.” As for NGC 5548, the highest ionization lines seem to respond with shorter lags than the lower ionization lines. The lags found for NGC 3783 are considerably shorter than those obtained for NGC 5548, with values of (formally) ∼ 0 days for He II+O III], and ∼ 4 days for Lyα, and C IV. The data further suggest lags of ∼ 4 days for Si IV+O IV], and 8–30 days for Si III]+C III]. Uncertainties in these quantities are likely to be of order 2–3 days for the stronger features (Lyα, C IV), and 3–4 days for the weaker ones (He II+O III], Si IV+O IV], Si III]+C III]). Mg II lagged the 1460 Å continuum by ∼ 9 days, although this result depends on the method of measuring the line flux, and may in fact be due to variability of the underlying Fe II lines. Correlation analysis further shows that the power density spectrum contains substantial unresolved power over time scales of ≲ 2 days, and that the character of the continuum variability may change with time.


1982 ◽  
Vol 70 ◽  
pp. 141-144
Author(s):  
A.G. Michalitsianos ◽  
M. Kafatos ◽  
R.E. Stencel ◽  
A.A. Boyarchuk

Low spectral resolution observations (∼ 6 A) were obtained with the International Ultraviolet Explorer (IUE) during its eclipse phase. Additional data obtained by other IUE groups have been included in our eclipse observations, enabling us to examine the UV spectral properties of this system over nearly an entire orbit that spans early 1979 through mid-1981. Data obtained over this time interval suggest an overall decline in UV emission consistent with the decline of optical emission following the outburst of 1975, where CI Cyg attained an increase of ∼ 3 magnitudes in the visual. The short wavelength spectrum λλ1200-2000 A is characterized by numerous intense high excitation emission lines that become more prominent out of eclipse. The LWR wavelength range λλ2000-3200 A exhibits a few more additional lines of 0 III, Mg II and He II that are superimposed on continuum that rises gradually with increasing wavelength. Additionally, OH emission bands are identified at λλ3064, 2875 A (cf. Diecke and Crosswhite 1962). Collaborative ground-based observations of CI Cyg with W. Blair of McGraw Hill Observatory suggest the presence of the Balmer continuum jump at λ3646 A, and enables us to ascribe the UV continuum observed with IUE to mainly Balmer free-bound recombination emission.


2019 ◽  
Vol 15 (S354) ◽  
pp. 189-194
Author(s):  
J. B. Climent ◽  
J. C. Guirado ◽  
R. Azulay ◽  
J. M. Marcaide

AbstractWe report the results of three VLBI observations of the pre-main-sequence star AB Doradus A at 8.4 GHz. With almost three years between consecutive observations, we found a complex structure at the expected position of this star for all epochs. Maps at epochs 2007 and 2010 show a double core-halo morphology while the 2013 map reveals three emission peaks with separations between 5 and 18 stellar radii. Furthermore, all maps show a clear variation of the source structure within the observing time. We consider a number of hypothesis in order to explain such observations, mainly: magnetic reconnection in loops on the polar cap, a more general loop scenario and a close companion to AB Dor A.


2015 ◽  
Vol 29 (22) ◽  
pp. 1550158
Author(s):  
Yunfeng Bai ◽  
Minjie Luan ◽  
Linjun Li ◽  
Zhelong He ◽  
Dongyu Li

Low threshold power density cw laser-induced heat has been observed in [Formula: see text] and [Formula: see text] codoped [Formula: see text] nanocrystals under excitation by a 980 nm IR laser. Codoped [Formula: see text] remarkably reduces the power density threshold of laser-induced heat compared with [Formula: see text] doped [Formula: see text] nanocrystals. When the excitation power density exceed [Formula: see text], [Formula: see text] codoped [Formula: see text] nanocrystals emit strong blackbody radiation. The thermal emission of [Formula: see text] should originate from the multiphonon relaxation between neighboring energy levels. One additional UC-PL enhancement is observed. The UC-PL intensity can be enhanced by an order of magnitude through high temperature calcination caused by light into heat.


1957 ◽  
Vol 4 ◽  
pp. 107-122 ◽  
Author(s):  
R. Minkowski

Loose agreement of a radio position of low accuracy with that of some object listed in the NGC is not sufficient to provide the identification of a radio source. Even satisfactory coincidence of a precise position with that of an astronomical object requires supporting evidence. Agreement of the size of the source with that of the visible object, at least in order of magnitude, is an important argument in favour of an identification; exact agreement of sizes can be expected only where radio and optical emission are physically connected. The radio spectrum, the optical spectrum, and the physical characteristics of the visual object also have to be taken into account. Observations of the radio spectrum should be particularly useful to support the identification of sources with H 11 regions which can be recognized from their thermal emission even if they are obscured and optically inaccessible. If all data are available, satisfactory agreement exists between optical and radio observations. The best example of this kind at the moment is perhaps NGC 2237, the Rosette nebula, reported as a source by Ko and Krauss (1955) [1] and also observed by Mills, Little and Sheridan (1956 [11]; see also paper 18).


1987 ◽  
Vol 93 ◽  
pp. 205-205 ◽  
Author(s):  
F. Verbunt

AbstractThe preliminary results of the analysis of more than 1000 spectra of cataclysmic variables in the archive of the International Ultraviolet Explorer were presented at the meeting. To characterize the slope of the spectra I use F = log(f1460Å/f2880Å). For most spectra F lies between 0.2 and 0.7. No correlation of F with orbital period, inclination, system type or (for dwarf novae) length of the interoutburst interval are found, apart from somewhat lower values of F for DQ Her type systems. Out of 16 dwarf novae for which spectra both at outburst maximum and minimum are available 11 show no large difference in F between maximum and minimum, and in 5 F declines with the flux level. Out of 6 dwarf novae 5 show very red spectra during the rise to maximum, and 1 shows slopes during rise similar to those during decline.In the ultraviolet resonance lines, due to a wind from the disc, no correlation is found between inclination and terminal velocity.


1996 ◽  
Vol 171 ◽  
pp. 414-414
Author(s):  
L. Maxfield ◽  
S.G. Djorgovski ◽  
D. Thompson ◽  
M.A. Pahre ◽  
R.R. de Carvalho ◽  
...  

We compare optical and infrared photometric and spectroscopic properties of high-redshift radio galaxies from the 3CR and B3 surveys. At a given redshift and a fixed restframe frequency, the two samples differ on average by an order of magnitude in radio power, thus providing a fair baseline in radio powerfor a range of redshifts. We present new optical and IR photometry and spectrosopy for a number of B3 sources. We combine these data with the existing corresponding information on B3 and 3CR sources, in order to explore different correlations of source properties with redshift, and among themselves. B3 sources follow the same trend as 3CR's in the K band Hubble diagram, although they do seem to be slightly fainter on average at a given redshift. This trend is slightly more prominent in the Gunn r band. This suggests that some fraction of the observed light in the r and K bands is contributed by an active nucleus, which also powers the radio lobes. The B3's also tend to have lower emission line luminosities than 3CR's at any given redshift, suggesting that there may be a correlation between line luminosity and radio power. Such a correlation is clearly seen and is followed by both samples. It suggests that the UV emission lines are largely powered by the active nucleus, ostensibly a hidden quasar, which is also responsible for the radio emission. We also examine the behavior of the optical and radio PA alignments for the combined B3+3CR data set. We find that high-power and high-redshift subsamples for both B3's and 3CR's show the alignments more prominently, but we still cannot tell which of these variables dominates this effect. This work was supported in part by the NSF PYI award AST-9157412, and the Bressler Foundation.


2018 ◽  
Vol 175 ◽  
pp. 14017 ◽  
Author(s):  
Julien Frison ◽  
Ryuichiro Kitano ◽  
Norikazu Yamada

One of the historical suggestions to tackle the strong CP problem is to take the up quark mass to zero while keeping md finite. The θ angle is then supposed to become irrelevant, i.e. the topological susceptibility vanishes. However, the definition of the quark mass is scheme-dependent and identifying the mu = 0 point is not trivial, in particular with Wilson-like fermions. More specifically, up to our knowledge there is no theoretical argument guaranteeing that the topological susceptibility exactly vanishes when the PCAC mass does. We will present our recent progresses on the empirical check of this property using Nf = 1 + 2 flavours of clover fermions, where the lightest fermion is tuned very close to [see formula in PDF] and the mass of the other two is kept of the order of magnitude of the physical ms. This choice is indeed expected to amplify any unknown non-perturbative effect caused by mu ≠ md. The simulation is repeated for several βs and those results, although preliminary, give a hint about what happens in the continuum limit.


1982 ◽  
Vol 70 ◽  
pp. 203-206
Author(s):  
M. Kafatos ◽  
A.G. Michalitsianos

AbstractWe have obtained the first high dispersion observations of RX Puppis in the wavelength region 1200 - 3200 A with the “International Ultraviolet Explorer” (IUE). The anomalies we observed in lines such as He II, C III], C IV, N III], N IV], 0 III], and Si III], that show split line profiles, Doppler displaced component(s) suggest dynamic activity in circumstellar material that probably has the form of rings and/or gas streamers between the cool giant and the hot companion, the Mg II lines show P-Cygni structure arising in the Mira primary. The continuum cannot be due to a star earlier than A0 II and it may arise in an accretion disk around the hot secondary. Moreover, the line emission requires photoionization either from a hot subdwarf or the inner accretion disk.


2020 ◽  
Vol 633 ◽  
pp. A101
Author(s):  
D. Hutsemékers ◽  
D. Sluse ◽  
P. Kumar

Gravitational microlensing is a powerful tool for probing the inner structure of distant quasars. In this context, we have obtained spectropolarimetric observations of the two images of the broad absorption line (BAL) quasar SDSS J081830.46+060138.0 (J0818+0601) at redshift z ≃ 2.35. We first show that J0818+0601 is actually gravitationally lensed, and not a binary quasar. A strong absorption system detected at z = 1.0065 ± 0.0002 is possibly due to the lensing galaxy. Microlensing is observed in one image and it magnifies the emission lines, the continuum, and the BALs differently. By disentangling the part of the spectrum that is microlensed from the part that is not microlensed, we unveil two sources of continuum that must be spatially separated: a compact one, which is microlensed, and an extended one, which is not microlensed and contributes to two thirds of the total continuum emission. J0818+0601 is the second BAL quasar in which an extended source of rest-frame ultraviolet continuum is found. We also find that the images are differently polarized, suggesting that the two continua might be differently polarized. Our analysis provides constraints on the BAL flow. In particular, we find that the outflow is seen with a nonzero onset velocity, and stratified according to ionization.


Sign in / Sign up

Export Citation Format

Share Document