scholarly journals The Coalescence of White Dwarfs And Type I Supernovae

1989 ◽  
Vol 114 ◽  
pp. 515-518
Author(s):  
Robert Mochkovitch ◽  
Mario Livio

AbstractIn the context of the white dwarf coalescence model for type la supernovae, we compute post-coalescence configurations involving a thick disk, rotating around a central white dwarf (the original primary), having the same total mass, angular momentum and energy as the initial system. We show that carbon ignition in rather low density material (105 – 10° g.cm−3) can be triggered during the merging process itself or later, by dissipation due to turbulence in the disk. The evolution of the object following carbon ignition is very uncertain.

Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


1989 ◽  
Vol 114 ◽  
pp. 337-340
Author(s):  
J.P. Lasota ◽  
J.M. Hameury ◽  
A.R. King

We show that the existence of the AM Her period spike implies (i) a unique white dwarf mass ≃ 0.6 − 0.7M⊙ for most magnetic CV’s (ii) nova explosions remove exactly the accreted mass from magnetic white dwarfs, and (iii) the maximum magnetic field for most CV’s is ≤ 4 × 107 G. The existence of the spike is very strong support for the idea that the period gap results from a drastic reduction of angular momentum losses when the secondary star becomes fully convective.


2019 ◽  
Vol 629 ◽  
pp. L6 ◽  
Author(s):  
Santiago Torres ◽  
Carles Cantero ◽  
María E. Camisassa ◽  
Teresa Antoja ◽  
Alberto Rebassa-Mansergas ◽  
...  

Aims. We analyzed the velocity space of the thin- and thick-disk Gaia white dwarf population within 100 pc by searching for signatures of the Hercules stellar stream. We aimed to identify objects belonging to the Hercules stream, and by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. Methods. We applied a kernel density estimation to the UV velocity space of white dwarfs. For the region where a clear overdensity of stars was found, we created a 5D space of dynamic variables. We applied a hierarchichal clustering method, HDBSCAN, to this 5D space, and identified those white dwarfs that share similar kinematic characteristics. Finally, under general assumptions and from their photometric properties, we derived an age estimate for each object. Results. The Hercules stream was first revealed as an overdensity in the UV velocity space of the thick-disk white dwarf population. Three substreams were then found: Hercules a and Hercules b, formed by thick-disk stars with an age distribution that peaked 4 Gyr in the past and extends to very old ages; and Hercules c, with a ratio of 65:35 of thin to thick stars and a more uniform age distribution that is younger than 10 Gyr.


1980 ◽  
Vol 58 ◽  
pp. 563-570
Author(s):  
Ken’ichi Nomoto

AbstractSupernova mechanisms in accreting white dwarfs (WDs) are presented, i.e., the carbon deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the WD. The various types of hydrogen shell-burning in the présupernova stage are also discussed.


2004 ◽  
Vol 215 ◽  
pp. 551-560 ◽  
Author(s):  
Sumner Starrfield ◽  
Edward M. Sion ◽  
Paula Szkody

Cataclysmic Variables are binary star systems and so are closely connected to the subject of this meeting. The stars revolve around the center of mass of the system. The gas lost by the secondary through the inner Lagrangian point enters the Roche lobe of the white dwarf with the angular momentum of the L1 point and, therefore, forms an accretion disk which rotates around the white dwarf. The gas must lose angular momentum to fall onto the white dwarf, and the white dwarf itself must rotate as it accretes infalling material and angular momentum and is gradually spun up. We will review what is known about these phenomena, and emphasize the new results about the white dwarfs that have been learned in the past few years.


1988 ◽  
Vol 132 ◽  
pp. 175-183
Author(s):  
Jesse L. Greenstein

The goal is largely historical, 30 years of instrumental progress in a difficult new field, faint white dwarfs, and some results. High signal-to-noise spectrophotometry at 40–160 Å resolution revealed the separation between hydrogen- and helium-rich atmospheres, and provided a temperature scale from models. The white-dwarf color-luminosity relation proved narrow. Their simple spectra made brute-force averaging possible to 14th magnitude at good photographic resolution. Features as shallow as 5% and 200 Å wide included C2, but in magnetic stars some strong absorptions remain unidentified. Metals are deficient, gravitational diffusion setting the surface composition. The Palomar double CCD spectrograph can now give S/N ≈ 100 to 17m. Some polarized white dwarfs have Zeeman triplets in magnetic fields near 20 megagauss. In one, Zeeman components are shifted up to 2000 Å at 300 megagauss. Rotation is small in all white dwarfs, angular momentum mostly lost. Non-LTE cores of Hα, Hβ exist and permit improved gravitational redshifts. An evolutionary phenomenon is progressive steepening of the Balmer decrement below 7000 K, cool atmospheres being helium-dominated.


1987 ◽  
Vol 93 ◽  
pp. 395-411
Author(s):  
K. Nomoto ◽  
M. Hashimoto

AbstractIf the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e, composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period X-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae.


1981 ◽  
Vol 93 ◽  
pp. 295-315
Author(s):  
Ken'ichi Nomoto

Presupernova evolution and the hydrodynamic behavior of supernova explosions in stars having electron-degenerate cores are summarized. Carbon deflagration supernovae in C+O cores disrupt the star completely. On the other hand, in electron capture supernovae, O+Ne+Mg cores collapse to form neutron stars despite the competing oxygen deflagration.Also discussed are white dwarf models for Type I supernovae (SN I). Supernova explosions in accreting white dwarfs are either the detonation or deflagration type depending mainly on the accretion rate. The carbon deflagration model reproduces many of the observed features of SN I.


Author(s):  
L O McNeill ◽  
R A Mardling ◽  
B Müller

Abstract We study the effect of tidal forcing on gravitational wave signals from tidally relaxed white dwarf pairs in the LISA, DECIGO and BBO frequency band (0.1 − 100 mHz). We show that for stars not in hydrostatic equilibrium (in their own rotating frames), tidal forcing will result in energy and angular momentum exchange between the orbit and the stars, thereby deforming the orbit and producing gravitational wave power in harmonics not excited in perfectly circular synchronous binaries. This effect is not present in the usual orbit-averaged treatment of the equilibrium tide, and is analogous to transit timing variations in multiplanet systems. It should be present for all LISA white dwarf pairs since gravitational waves carry away angular momentum faster than tidal torques can act to synchronize the spins, and when mass transfer occurs as it does for at least eight LISA verification binaries. With the strain amplitudes of the excited harmonics depending directly on the density profiles of the stars, gravitational wave astronomy offers the possibility of studying the internal structure of white dwarfs, complimenting information obtained from asteroseismology of pulsating white dwarfs. Since the vast majority of white-dwarf pairs in this frequency band are expected to be in the quasi-circular state, we focus here on these binaries, providing general analytic expressions for the dependence of the induced eccentricity and strain amplitudes on the stellar apsidal motion constants and their radius and mass ratios. Tidal dissipation and gravitation wave damping will affect the results presented here and will be considered elsewhere.


Sign in / Sign up

Export Citation Format

Share Document