On the role of mother-planet magnetic field in spiral structure explanation of formation of spokes

1984 ◽  
Vol 75 ◽  
pp. 569-574
Author(s):  
G.X. Song

AbstractSome features about the spokes in B rings can be explained in terms of the electromagnetic effect. Due to the existence of the magnetic field in Saturn, plasma and micro-sized dust particles, the loosely spiral structure of magnetic field near Saturn, which is similar to that invoked to explain the sectoral structure of the interplanetary magnetic field in the solar system, may be induced.The spiral structure is rotating with mother-planet and will gradually form at corotation circle, but the wave amplitude will grow outside the corotation and will decay gradually inside the corotation. Using the characteristics of this spiral structure, we have tried to attack the mechanism of the formation of spokes.

1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


1995 ◽  
Vol 12 (2) ◽  
pp. 180-185 ◽  
Author(s):  
D. J. Galloway ◽  
C. A. Jones

AbstractThis paper discusses problems which have as their uniting theme the need to understand the coupling between a stellar convection zone and a magnetically dominated corona above it. Interest is concentrated on how the convection drives the atmosphere above, loading it with the currents that give rise to flares and other forms of coronal activity. The role of boundary conditions appears to be crucial, suggesting that a global understanding of the magnetic field system is necessary to explain what is observed in the corona. Calculations are presented which suggest that currents flowing up a flux rope return not in the immediate vicinity of the rope but rather in an alternative flux concentration located some distance away.


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2018 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Anup Kumar ◽  
Prakash Mondal ◽  
Claudio Fontanesi

Magneto-electrochemistry (MEC) is a unique paradigm in science, where electrochemical experiments are carried out as a function of an applied magnetic field, creating a new horizon of potential scientific interest and technological applications. Over time, detailed understanding of this research domain was developed to identify and rationalize the possible effects exerted by a magnetic field on the various microscopic processes occurring in an electrochemical system. Notably, until a few years ago, the role of spin was not taken into account in the field of magneto-electrochemistry. Remarkably, recent experimental studies reveal that electron transmission through chiral molecules is spin selective and this effect has been referred to as the chiral-induced spin selectivity (CISS) effect. Spin-dependent electrochemistry originates from the implementation of the CISS effect in electrochemistry, where the magnetic field is used to obtain spin-polarized currents (using ferromagnetic electrodes) or, conversely, a magnetic field is obtained as the result of spin accumulation.


2008 ◽  
Vol 56 (6) ◽  
pp. 852-855 ◽  
Author(s):  
E. Kallio ◽  
R.A. Frahm ◽  
Y. Futaana ◽  
A. Fedorov ◽  
P. Janhunen

2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Yong-Xia Dai ◽  
Jiong-Lei Wu ◽  
Jian-Xing Ren ◽  
Helen Wu ◽  
...  

The aim of this work is to find an effective method to improve the collection efficiency of electrostatic precipitators (ESPs). A mathematic model of an ESP subjected to the external magnetic field was proposed. The model considered the coupled effects between the gas flow field, particle dynamic field and electromagnetic field. Particles following a Rosin-Rammler distribution were simulated under various conditions and the influence of the magnetic field density on the capture of fine particles was investigated. The collection efficiency and the escaped particle size distribution under different applied magnetic field intensities were discussed. Particle trajectories inside the ESP under aerodynamic and electromagnetic forces were also analyzed. Numerical results indicate that the collection efficiency increases with the increase of applied magnetic field. It was also found that a stronger applied magnetic field results in a larger particle deflection towards the dust collection plates. Furthermore, the average diameter of escaping particles decreases and the dispersion of dust particles with different sizes increases with the increasingly applied magnetic field. Finally, the average diameter decreases almost linearly with the magnetic field until it drops to a certain value. The model proposed in this work is able to obtain important information on the particle collection phenomena inside an industrial ESP under the applied magnetic field.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Sampad Kumar Panda

Abstract In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X ( B x Bx ), Y ( B y By ), and Z ( B z Bz ) plane. Visible enhancement in TEC is noticed in the northern polar latitude when B x < 0 Bx<0 , B y < − 6 nT By<-6\hspace{0.1667em}\text{nT} or B y > 6 nT By>6\hspace{0.1667em}\text{nT} and B z > 0 Bz>0 whereas the southern polar latitude perceives TEC enhancements with B x > 0 Bx>0 , − 6 nT < B y < 6 nT -6\hspace{0.1667em}\text{nT}<By<6\hspace{0.1667em}\text{nT} and B z < 0 Bz<0 . Further investigation reveals the intensity of phase scintillation being more pronounced than the amplitude scintillation during the disturbed geomagnetic conditions with excellent correlation with the temporal variation of TEC at both the stations. Corresponding variations in the parameters are studied in terms of particle precipitation, auroral oval expansion, Joule’s heating phenomena, and other ionospheric parameters. The studies are in line with efforts for improving ionospheric delay error and scintillation modeling and satellite-based positioning accuracies in polar latitudes.


Sign in / Sign up

Export Citation Format

Share Document