scholarly journals Rotationally-Enhanced Stellar Winds (Review Paper)

1987 ◽  
Vol 92 ◽  
pp. 316-338
Author(s):  
J. M. Marlborough

The rotationally-enhanced stellar wind model for Be stars represents one attempt to understand many of the phenomena related to Be stars in terms of a stellar wind distorted and perhaps also enhanced by rapid stellar rotation. This review will concentrate exclusively on this particular approach; the current status of other attempts to model the circumstellar envelopes (CE) of Be stars are described in other reviews in this volume. It is assumed that Be stars are single stars; if a member of a multiple system, the separation of all components from the Be star is assumed to be sufficiently large that interactions due to mass transfer from any companion to the Be star are negligible.

1987 ◽  
Vol 92 ◽  
pp. 38-48
Author(s):  
Paul K. Barker

AbstractNo mean longitudinal or toroidal magnetic fields have yet been detected on any classical Be star. Models of stellar winds and circumstellar envelopes around magnetic Be stars are not appreciably constrained by present observed upper limits on field strength. A few magnetic Be stars do exist among the helium strong stars, but these objects show spectral phenomenology which is unmistakably distinct from that shown by every other object known as a Be star.


1976 ◽  
Vol 70 ◽  
pp. 335-370 ◽  
Author(s):  
J. M. Marlborough

A survey is presented of the theoretical attempts to determine the structure of the circumstellar matter around Be stars. The general equations describing the structure and dynamics of Be star envelopes are given. The complications introduced by various physical phenomena are briefly discussed and initial attempts to solve restricted problems are considered. The various ad hoc models proposed for Be stars are discussed and comparisons of the observations with predictions of these models are illustrated. The strengths and weaknesses of these models are evaluated and areas where progress is being or should be made are considered.


1987 ◽  
Vol 92 ◽  
pp. 291-308 ◽  
Author(s):  
E.P.J. van den Heuvel ◽  
S. Rappaport

Most evidence on X-ray emission from the vicinity of Be stars concerns the Be/X-ray binaries. Presently some 20 of these systems are known, making them the most numerous class of massive X-ray binaries. Evidence for the binary nature of these systems comes from (i) Doppler modulation of X-ray pulse periods, (ii) periodic X-ray flaring behavior, and (iii) correlated optical and X-ray variability. The correlation between X-ray pulse period and orbital period found by Corbet (1984) can potentially provide important information on the densities and velocities in the circumstellar disks of Be stars.Evolutionary models indicate that the Be/X-ray binaries represent a later stage in the evolution of normal close binaries with initial primary masses predominantly in the the range 8 to 15 M⊙ . These models indicate that also a class of slightly less massive Be star binaries should exist in which the compact companions are white dwarfs. Be-type blue stragglers in galactic clusters may be such systems.


2019 ◽  
Vol 632 ◽  
pp. A6 ◽  
Author(s):  
F. Gallet ◽  
C. Zanni ◽  
L. Amard

Context. The early pre-main sequence phase during which solar-mass stars are still likely surrounded by an accretion disk represents a puzzling stage of their rotational evolution. While solar-mass stars are accreting and contracting, they do not seem to spin up substantially. Aims. It is usually assumed that the magnetospheric star-disk interaction tends to maintain the stellar rotation period constant (“disk-locking”), but this hypothesis has never been thoroughly verified. Our aim is to investigate the impact of the star-disk interaction mechanism on the stellar spin evolution during the accreting pre-main sequence phases. Methods. We devised a model for the torques acting on the stellar envelope based on studies of stellar winds, and we developed a new prescription for the star-disk coupling founded on numerical simulations of star-disk interaction and magnetospheric ejections. We then used this torque model to follow the long-term evolution of the stellar rotation. Results. Strong dipolar magnetic field components up to a few kG are required to extract enough angular momentum so as to keep the surface rotation rate of solar-type stars approximately constant for a few Myr. Furthermore an efficient enough spin-down torque can be provided by either one of the following: a stellar wind with a mass outflow rate corresponding to ≈10% of the accretion rate, or a lighter stellar wind combined with a disk that is truncated around the corotation radius entering a propeller regime. Conclusions. Magnetospheric ejections and accretion powered stellar winds play an important role in the spin evolution of solar-type stars. However, kG dipolar magnetic fields are neither uncommon or ubiquitous. Besides, it is unclear how massive stellar winds can be powered while numerical models of the propeller regime display a strong variability that has no observational confirmation. Better observational statistics and more realistic models could contribute to help lessen our calculations’ requirements.


1994 ◽  
Vol 162 ◽  
pp. 219-229
Author(s):  
K.S. Bjorkman

The first comprehensive linear polarization data on hot stars covering the spectral range from 1500 to 7600Å are presented. These results are based on recent observations made with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), combined with ground-based observations from the Pine Bluff Observatory. Implications of the data for models of the circumstellar envelopes of hot stars are discussed, with particular emphasis on the surprising results found for the rapidly rotating Be stars. In particular, WUPPE discovered that the continuum polarization in Be stars decreases into the ultraviolet, which was not predicted by models prior to the observations. Time variability in the optical data is also discussed. Possible interpretations of these results are examined in the light of recent new models for Be star disks.


1988 ◽  
Vol 132 ◽  
pp. 123-125
Author(s):  
D. Baade ◽  
L. B. Lucy

For more than ten years now, a controversial issue in studies of stellar winds has concerned the existence or not of a coronal zone (T ∼ 106 K) at the base of the cool winds (T ∼ Teff) of early-type stars. The latest revival of interest in this possibility is due to Wolfire et al. (1985) who showed that Waldron's (1984) recombination stellar wind (RSW) version of the hot corona – cool wind model (Hearn 1975; Cassinelli et al. 1978) yields models for ξ Puppis (O4 If) that are consistent with both IRAS and Einstein IPC data, thus refuting an earlier claim (Lamers et al. 1984) to have excluded the existence of a coronal zone.


1982 ◽  
Vol 98 ◽  
pp. 247-251
Author(s):  
P. Persi ◽  
M. Ferrari-Toniolo ◽  
G.L. Grasdalen

Preliminary results of our infrared observations from 2.3 up to 10 and 20 microns of the Be-X-ray stars X Per, γ Cas and HDE 245770, indicate the presence of an ionized circumstellar disk with an electron density law of the type ne ∝ r−3.5. x Per and γ Cas show besides, variable infrared excess at 10μ suggesting variability in the stellar wind. LS I+65°010 presents an anomalous infrared energy distribution for a Be star.


1976 ◽  
Vol 70 ◽  
pp. 157-164 ◽  
Author(s):  
C. R. Purton

During the past few years the search for radio stars has been both intensive and extensive, and Be stars are among the various types of objects which have been examined. A large number of Be stars have not been detected, and to date no classical Be star has been found to emit detectable amounts of radio emission. However, following the tradition of radio astronomy to emphasise the abnormal or extreme cases, radio emission has been observed which is associated with a few peculiar Be stars.


1982 ◽  
Vol 98 ◽  
pp. 501-507
Author(s):  
Ulrich Finkenzeller

“Herbig-Ae-Be-Stars” are assumed to be pre-main sequence objects of moderate mass with line emitting envelopes of an unknown nature. From our present theoretical knowledge it is not clear whether the physical structure of these envelopes is dominated by mass accretion or mass loss induced by a stellar wind or radiation pressure effects. Radial velocities and remarks on peculiarities are given for the star HD 200 775, which seems to represent a typical Herbig-Ae-Be-star fairly well. A catalogue of about 60 supposed Herbig-Ae-Be-stars is presented and comments, in particular on the brighter members, are invited.


2013 ◽  
Vol 9 (S301) ◽  
pp. 465-466
Author(s):  
Coralie Neiner ◽  
Stéphane Mathis

AbstractThe Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.


Sign in / Sign up

Export Citation Format

Share Document