scholarly journals Glacier thermal regime and suspended-sediment yield: a comparison of two high-Arctic glaciers

1997 ◽  
Vol 24 ◽  
pp. 32-37 ◽  
Author(s):  
A. J. Hodson ◽  
M. Tranter ◽  
J. A. Dowdeswell ◽  
A. M. Gurnell ◽  
J. O. Hagen

This paper compares estimates of suspended-sediment yield and discharge from two glacier basins in Svalhard exhibiting contrasting glacial thermal regimes: Austre Brøggerbreen (~12 km2), which is almost entirely cold-based, and Finsterwalderbreen (~44 km2), dominated by warm basal ice. There are marked differences in the magnitude and temporal pattern of mean daily discharge and mean daily suspended-sediment concentration from the two glacier basins. Specific suspended-sediment yields from Finsterwalderbreen (710–2900 t km−2 a−1) were more than one order of magnitude greater than at Austre Brøggerbreen (81–110 t km−2 a−1). These differences are ascribed to the influence of thermal regime upon the meltwater drainage system and the predominant sources of suspended sediment. The potential significance of glacier thermal regime is further explored using studies from other glacier basins in Svalbard. Variations in thermal regime resulting from mass-balance adjustments since the termination of the Little Ice Age are also examined.

1997 ◽  
Vol 24 ◽  
pp. 32-37 ◽  
Author(s):  
A. J. Hodson ◽  
M. Tranter ◽  
J. A. Dowdeswell ◽  
A. M. Gurnell ◽  
J. O. Hagen

This paper compares estimates of suspended-sediment yield and discharge from two glacier basins in Svalhard exhibiting contrasting glacial thermal regimes: Austre Brøggerbreen (~12 km2), which is almost entirely cold-based, and Finsterwalderbreen (~44 km2), dominated by warm basal ice. There are marked differences in the magnitude and temporal pattern of mean daily discharge and mean daily suspended-sediment concentration from the two glacier basins. Specific suspended-sediment yields from Finsterwalderbreen (710–2900 t km−2 a−1) were more than one order of magnitude greater than at Austre Brøggerbreen (81–110 t km−2 a−1). These differences are ascribed to the influence of thermal regime upon the meltwater drainage system and the predominant sources of suspended sediment. The potential significance of glacier thermal regime is further explored using studies from other glacier basins in Svalbard. Variations in thermal regime resulting from mass-balance adjustments since the termination of the Little Ice Age are also examined.


2013 ◽  
Vol 17 (11) ◽  
pp. 4641-4657 ◽  
Author(s):  
S. B. Morera ◽  
T. Condom ◽  
P. Vauchel ◽  
J.-L. Guyot ◽  
C. Galvez ◽  
...  

Abstract. Hydro-sedimentology development is a great challenge in Peru due to limited data as well as sparse and confidential information. This study aimed to quantify and to understand the suspended sediment yield from the west-central Andes Mountains and to identify the main erosion-control factors and their relevance. The Tablachaca River (3132 km2) and the Santa River (6815 km2), located in two adjacent Andes catchments, showed similar statistical daily rainfall and discharge variability but large differences in specific suspended-sediment yield (SSY). In order to investigate the main erosion factors, daily water discharge and suspended sediment concentration (SSC) datasets of the Santa and Tablachaca rivers were analysed. Mining activity in specific lithologies was identified as the major factor that controls the high SSY of the Tablachaca (2204 t km2 yr−1), which is four times greater than the Santa's SSY. These results show that the analysis of control factors of regional SSY at the Andes scale should be done carefully. Indeed, spatial data at kilometric scale and also daily water discharge and SSC time series are needed to define the main erosion factors along the entire Andean range.


2013 ◽  
Vol 1 (No. 1) ◽  
pp. 23-31 ◽  
Author(s):  
Bečvář Martin

Sediment is a natural component of riverine environments and its presence in river systems is essential. However, in many ways and many places river systems and the landscape have been strongly affected by human activities which have destroyed naturally balanced sediment supply and sediment transport within catchments. As a consequence a number of severe environmental problems and failures have been identified, in particular the link between sediments and chemicals is crucial and has become a subject of major scientific interest. Sediment load and sediment concentration are therefore highly important variables that may play a key role in environment quality assessment and help to evaluate the extent of potential adverse impacts. This paper introduces a methodology to predict sediment loads and suspended sediment concentrations (SSC) in large European river basins. The methodology was developed within an MSc research study that was conducted in order to improve sediment modelling in the GREAT-ER point source pollution river modelling package. Currently GREAT-ER uses suspended sediment concentration of 15 mg/l for all rivers in Europe which is an obvious oversimplification. The basic principle of the methodology to predict sediment concentration is to estimate annual sediment load at the point of interest and the amount of water that transports it. The amount of transported material is then redistributed in that corresponding water volume (using the flow characteristic) which determines sediment concentrations. Across the continent, 44 river basins belonging to major European rivers were investigated. Suspended sediment concentration data were collected from various European basins in order to obtain observed sediment yields. These were then compared against the traditional empiric sediment yield estimators. Three good approaches for sediment yield prediction were introduced based on the comparison. The three approaches were applied to predict annual sediment yields which were consequently translated into suspended sediment concentrations. SSC were predicted at 47 locations widely distributed around Europe. The verification of the methodology was carried out using data from the Czech Republic. Observed SSC were compared against the predicted ones which validated the methodology for SSC prediction.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1451 ◽  
Author(s):  
Ludmila Kuksina

This study investigates the spatial and temporal variability of water runoff and suspended sediment yield in rivers in the Kamchatsky Krai territory (in the Far East of the Russian Federation). It is based on data from 269 monitoring stations for the period of hydrometeorological observations (1930–2015). The representativeness and the homogeneity of data on water runoff and suspended sediment yield was examined. Regions with prescribed limits of specific water discharge (L·s−1·km−2) and suspended sediment concentration (mg·L−1) variability were selected in the Kamchatsky Krai territory. Most rivers in this region are characterized by two relatively long trends in these characteristics that increased from the late 1970s to the early 1980s, followed by a subsequent decline (until 2015). Kamchatsky Krai includes 9 specific water discharge and 18 suspended sediment concentration regions. Hydrometeorological data of three zonal types of water runoff and corresponding suspended sediment concentration distribution were described, and five azonal types of water regime were characterized. One of these types was characterized by a nearly uniform distribution of water runoff within the year, due to the predominance of groundwater feeding source, while the rest of them had mixed feeding. The present study is the first study to describe the water regime of rivers on volcanic flanks in the Kamchatsky Krai.


Author(s):  
Anatolii Tsyplenkov ◽  
Valentin Golosov ◽  
Pelagiya Belyakova

Quantifying and understanding catchment sediment yields is crucial both from a scientific and environmental management perspective. To deepen the understanding of land use impacts and climate change on sediment load, we explore mechanisms of the suspended sediment yield formation in the Northern Caucasus during the Anthropocene. We examine how sediment flux of various river basins with different land-use/landcover and glacier cover changes during the 1925-2018 period. Our analysis is based on observed mean annual suspended sediment discharges (SSD, kg·s−1) and annual fluxes (SSL, t·yr−1) from 33 Roshydromet gauging stations (Russia). SSL series have been analyzed to detect statistically significant changes during the 1925-2018 period. The occurrence of abrupt change points in SSD was investigated using cumulative sum (CUSUM) charts. We found that SSL has decreased by −1.81% per year on average at most gauges. However, the decline was not linear. Several transition years are expected in the region: increasing trends from the 1950s and decreasing trends from 1988-1994. Correlation analyses showed that variation in SSL trend values is mainly explained by gauging station altitude, differences in land use (i.e., the fraction of cropland), and catchment area. Nonetheless, more accurate quantifications of SSL trend values and more refined characterizations of the catchments regarding (historical) land use, soil types/lithology, weather conditions, and topography may reveal other tendencies.


Author(s):  
L. Kuksina ◽  
N. Alexeevsky

Abstract. Research into the spatial and temporal variability of suspended sediment flux (SSF, t year−1) has been conducted for rivers in the Kamchatka Krai (in the far east of the Russian Federation). The study of long-term fluctuations in SSF was based on difference-integral curve analysis. Most of the rivers in the region are characterized by two relatively long-term trends in SSF; increases from the late 1970s to the early 1980s, followed by a subsequent decline. Kamchatka was divided into regions based on similar conditions of specific suspended sediment yield (SSSY, t km−2 year−1) followed by a determination of the various factors controlling it. New maps of suspended sediment concentration (SSC, mg L−1) and SSSY for Kamchatka also were constructed and, based on this study, there currently appear to be 18 SSC and 13 SSSY regions, as opposed to 4 and 2 regions, respectively, as had been determined in the 1970s. The influence of volcanoes on SSF can be substantial, and can increase up to 5-fold after eruptions; SSC can reach 6∙105 mg L−1 in rivers draining the flanks of volcanoes.


1998 ◽  
Vol 12 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Andrew Hodson ◽  
Angela Gurnell ◽  
Martyn Tranter ◽  
Jim Bogen ◽  
Jon Ove Hagen ◽  
...  

Author(s):  
L. V. Kuksina

The regularities of spatiotemporal variability of suspended sediment yield characteristics were studied. Based on the analysis of difference-integral yield curves, it was found that most of the rivers in Kamchatka krai are characterized by the presence of two relatively long trends in the suspended sediment yield variability: an increase until the end of the 1970s–early 1980s, and its subsequent decrease. This regularity disturbs in rivers under the influence of volcanic eruptions, where the most significant increasing of sediment yield is observed after major eruptions. Existent maps of mean annual suspended sediment concentration and mean annual specific suspended sediment yield were significantly specified (18 instead 4 and 13 instead two zones were marked respectively). The map of grain-size distribution of suspended sediment was compiled (three zones was marked in region under study). Maximum values of mean annual specific suspended sediment yield (more than 500 t km-2 yr-1), suspended sediment concentration (more than 1000 g m-3) and grain-size of sediments are observed in water runoff of volcanic areas. Minimum values of suspended sediment concentration, specific suspended sediment yield, as well as grain-size of sediments characterized the mainland part of the krai.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1831 ◽  
Author(s):  
Donatella Pavanelli ◽  
Claudio Cavazza ◽  
Stevo Lavrnić ◽  
Attilio Toscano

Anthropogenic activities, and in particular land use/land cover (LULC) changes, have a considerable effect on rivers’ flow rates and their morphologies. A representative example of those changes and resulting impacts on the fluvial environment is the Reno Mountain Basin (RMB), located in Northern Italy. Characterized by forest exploitation and agricultural production until World War II, today the RMB consists predominantly of meadows, forests and uncultivated land, as a result of agricultural land abandonment. This study focuses on the changes of the Reno river’s morphology since the 1950s, with an objective of analyzing the factors that caused and influenced those changes. The factors considered were LULC changes, the Reno river flow rate and suspended sediment yield, and local climate data (precipitation and temperature). It was concluded that LUCL changes caused some important modifications in the riparian corridor, riverbed size, and river flow rate. A 40–80% reduction in the river bed area was observed, vegetation developed in the riparian buffer strips, and the river channel changed from braided to a single channel. The main causes identified are reductions in the river flow rate and suspended sediment yield (−36% and −38%, respectively), while climate change did not have a significant effect.


Sign in / Sign up

Export Citation Format

Share Document