scholarly journals Ocean tides under the Filchner-Ronne Ice Shelf, Antarctica

1996 ◽  
Vol 23 ◽  
pp. 217-225 ◽  
Author(s):  
M. J. Smithson ◽  
A. V. Robinson ◽  
R. A. Flather

A depth-averaged finite-difference numerical model has been used to make a preliminary study of the tides under the Filchner–Ronne Ice Shelf. Open boundary conditions were specified using the global ocean model of Schwiderski. Tidal constituents for the two principal semi-diurnal constituents M2 and S2, and the two principal diurnal constituents Ο1 and K1 were extracted from computed sea-surface elevations by harmonic analysis. Measured values near to the grounding line could only be reproduced satisfactorily by increasing the bottom friction coefficient under the ice to 50 times the open-ocean value. This destroys any agreement near the ice front or at pelagic sites. It is thought that a friction coefficient which varies with distance under the ice would be able to reproduce better all the available measurements. More tidal measurements are required to validate any model of the region with model experiments being used to help pinpoint possible sites for instrument deployment.

1996 ◽  
Vol 23 ◽  
pp. 217-225 ◽  
Author(s):  
M. J. Smithson ◽  
A. V. Robinson ◽  
R. A. Flather

A depth-averaged finite-difference numerical model has been used to make a preliminary study of the tides under the Filchner–Ronne Ice Shelf. Open boundary conditions were specified using the global ocean model of Schwiderski. Tidal constituents for the two principal semi-diurnal constituents M2 and S2, and the two principal diurnal constituents Ο1 and K1 were extracted from computed sea-surface elevations by harmonic analysis. Measured values near to the grounding line could only be reproduced satisfactorily by increasing the bottom friction coefficient under the ice to 50 times the open-ocean value. This destroys any agreement near the ice front or at pelagic sites. It is thought that a friction coefficient which varies with distance under the ice would be able to reproduce better all the available measurements. More tidal measurements are required to validate any model of the region with model experiments being used to help pinpoint possible sites for instrument deployment.


2017 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. A Regional Antarctic and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner-Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in-situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase of ice-shelf basal melt rates.


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 765-776 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. The Regional Antarctic ice and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice-shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner–Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase in ice-shelf basal melt rates.


2020 ◽  
Author(s):  
Ralph Timmermann ◽  
Torsten Albrecht

<p>To study Antarctica’s contribution to ongoing and future sea level rise, a coupled ice sheet – ice shelf – ocean model with an explicit representation of ice shelf cavities has been developed. The coupled model is based on a global implementation of the Finite Element Sea ice Ocean Model (FESOM) with a mesh that is substantially refined in the marginal seas of the Southern Ocean. The Antarctic Ice Sheet is represented by a regional setup of the Parallel Ice Sheet Model PISM, comprising the Filchner-Ronne Ice Shelf (FRIS) and the grounded ice in its catchment area up to the ice divides.  At the base of the FRIS, melt rates and ocean temperatures from FESOM are applied. PISM returns ice thickness and the position of the grounding line. Buildung on infrastructure developed for the Regional Antarctic and Global Ocean (RAnGO) model, we use a pre-computed FESOM mesh that is adopted to the varying cavity geometry in each coupling step, i.e. currently once per model year. Changes in water column thickness are easily accounted for by the terrain-following vertical coordinate system in the ice shelf cavity. The ice sheet model is run on a horizontal grid with 1 km resolution to ensure an appropriate representation of grounding line processes. Enhancement factors for the approximation of the stress balance, as often used in coarse-resolution ice sheet models, become obsolete at such high resolution. Ice stream flow is well captured by polythermal coupling of the ice flow and a Mohr-Coulomb yield stress criterion that accounts for properties of the till material and the effective pressure on the saturated till. We present results from model runs with a 20<sup>th</sup>-century climate forcing and projections until the end of the 22<sup>nd</sup> century. We will show that cavity hydrography, ice shelf basal melt rates and thickness evolution as well as the feedback on grounded ice  in the coupled model simulations are very sensitive to the atmospheric forcing scenario applied.</p><p> </p><p> </p>


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


2012 ◽  
Vol 58 (212) ◽  
pp. 1227-1244 ◽  
Author(s):  
Carl V. Gladish ◽  
David M. Holland ◽  
Paul R. Holland ◽  
Stephen F. Price

AbstractA numerical model for an interacting ice shelf and ocean is presented in which the ice- shelf base exhibits a channelized morphology similar to that observed beneath Petermann Gletscher’s (Greenland) floating ice shelf. Channels are initiated by irregularities in the ice along the grounding line and then enlarged by ocean melting. To a first approximation, spatially variable basal melting seaward of the grounding line acts as a steel-rule die or a stencil, imparting a channelized form to the ice base as it passes by. Ocean circulation in the region of high melt is inertial in the along-channel direction and geostrophically balanced in the transverse direction. Melt rates depend on the wavelength of imposed variations in ice thickness where it enters the shelf, with shorter wavelengths reducing overall melting. Petermann Gletscher’s narrow basal channels may therefore act to preserve the ice shelf against excessive melting. Overall melting in the model increases for a warming of the subsurface water. The same sensitivity holds for very slight cooling, but for cooling of a few tenths of a degree a reorganization of the spatial pattern of melting leads, surprisingly, to catastrophic thinning of the ice shelf 12 km from the grounding line. Subglacial discharge of fresh water along the grounding line increases overall melting. The eventual steady state depends on when discharge is initiated in the transient history of the ice, showing that multiple steady states of the coupled system exist in general.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Rupert Gladstone ◽  
Ben Galton-Fenzi ◽  
David Gwyther

<p>The ocean-driven basal melting has important implications for the stability of ice shelves in Antarctic, which largely affects the ice sheet mass balance, ocean circulation, and subsequently global sea level rise. Due to the limited observations in the ice shelf cavities, the couple ice sheet ocean models have been playing a critical role in examining the processes governing basal melting. In this study we use the Framework for Ice Sheet-Ocean Coupling (FISOC) to couple the Elmer/Ice full-stokes ice sheet model and the Regional Ocean Modeling System (ROMS) ocean model to model ice shelf/ocean interactions for an idealised three-dimensional domain. Experiments followed the coupled ice sheet–ocean experiments under the first phase of the Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1). A periodic pattern in the simulated mean basal melting rates is found to be highly consistent with the maximum barotropic stream function and also the grounding line retreat row by row,  which is likely to be related with the gyre break down near the grounding line caused by some non-physical instability events from the ocean bottom. Sensitivity tests are carried out, showing that this periodic pattern is not sensitive to the choice of couple time intervals and horizontal eddy viscosities but sensitive to vertical resolution in the ocean model, the chosen critical water column thickness in the wet-dry scheme, and the tracer properties for the nudging dry cells at the ice-ocean interface boundary. Further simulations are necessary to better explain the mechanism involved in the couple ice-ocean system, which is very significant for its application on the realistic ice-ocean systems in polar regions.</p>


2021 ◽  
Author(s):  
Moritz Kreuzer ◽  
Ronja Reese ◽  
Willem Huiskamp ◽  
Stefan Petri ◽  
Torsten Albrecht ◽  
...  

<p>The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high resolution configurations, limiting these studies to individual glaciers or regions over short time scales of decades to a few centuries. To study global and long term interactions, we developed a framework to couple the dynamic ice sheet model PISM with the global ocean general circulation model MOM5 via the ice-shelf cavity module PICO. Since ice-shelf cavities are not resolved by MOM5, but parameterized with the box model PICO, the framework allows the ice sheet and ocean model to be run at resolution of 16 km and 3 degrees, respectively. We present first results from our coupled setup and discuss stability, feedbacks, and interactions of the Antarctic Ice Sheet and the global ocean system on millennial time scales.</p>


Author(s):  
Alan Frendy Koropitan ◽  
Safwan Hadi ◽  
Ivonne M.Radjawane

Princeton Ocean Model (POM) was used to calculate the tidal current in Lampung Bay using diagnostic mode. The model was forced by tidal elevation, which was given along the open boundary using a global ocean tide model-ORITIDE. The computed tidal elevation at St. 1 and St 2 are in a good agreement with the observed data, but the computed tidal current at St 1 at depth 2 m is not good and moderate approximation is showed at depth 10 m. Probably, it was influenced by non-linier effect of coastal geometry and bottom friction because of the position of current meter, mooring closed to the coastline. Generally, the calculated tidal currents in all layers show that the water flows into the bay during flood tide and goes out from the bay during ebb tide. The tidal current becomes strong when passing through the narrow passage of Pahawang Strait. The simulation of residual tidal current with particular emphasis on predominant contituent of M2 shows a strong inflow from the western part of the bay mouth, up to the central part of the bay, then the strong residual current deflects to the southeast and flows out from the eastern part of the bay mouth. This flow pattern is apparent in the upper and lower layer. The other part flows to the bay head and froms an antic lockwise circulation in the small basin region of the bay head. The anticlockwise circulations are showed in the upper layer and disappear in the layer near the bottom. Keywords: POM, diagnostic mode, tidal current, residual current, Lampung Ba.


2015 ◽  
Vol 8 (8) ◽  
pp. 6611-6668 ◽  
Author(s):  
B. Tranchant ◽  
G. Reffray ◽  
E. Greiner ◽  
D. Nugroho ◽  
A. Koch-Larrouy ◽  
...  

Abstract. INDO12, a 1/12° regional version of the NEMO physical ocean model covering the whole Indonesian EEZ has been developed and is now running every week in the framework of the INDESO project (Infrastructure Development of Space Oceanography) implemented by the Indonesian Ministry of Marine Affairs and Fisheries. The initial hydrographic conditions as well as open boundary conditions are derived from the operational global ocean forecasting system at 1/4° operated by Mercator Ocean. Atmospheric forcing fields (3 hourly ECMWF analyses) are used to force the regional model. INDO12 is also forced by tidal currents and elevations, and by the inverse barometer effect. The turbulent mixing induced by internal tides is taken into account through a specific parameterization. In this study we evaluate the model skill through comparisons with various datasets including outputs of the parent model, climatologies, in situ temperature and salinity measurements, and satellite data. The simulated and altimeter-derived Eddy Kinetic Energy fields display similar patterns and confirm that tides are a dominant forcing in the area. The volume transport of the Indonesian ThroughFlow is in good agreement with the INSTANT current meter estimates while the transport through Luzon Strait is, on average, westward but probably too weak. Significant water mass transformation occurs along the main routes of the Indonesian Throughflow (ITF) and compares well with observations. Vertical mixing is able to erode the South and North Pacific subtropical waters salinity maximum as seen in TS diagrams. Compared to satellite data, surface salinity and temperature fields display marked biases in the South China Sea. Altogether, INDO12 proves to be able to provide a very realistic simulation of the ocean circulation and water mass transformation through the Indonesian Archipelago. A few weaknesses are also detected. Work is on-going to reduce or eliminate these problems in the second INDO12 version.


Sign in / Sign up

Export Citation Format

Share Document