scholarly journals Glaciation, erosion and the evolution of the Transantarctic Mountains, Antarctica

1996 ◽  
Vol 23 ◽  
pp. 303-308 ◽  
Author(s):  
Andrew Kerr ◽  
Alan Gilchrist

Modelling studies of the tectonic evolution of the Transantarctic Mountains in Antarctica have drawn differing conclusions as to the primary mechanisms involved. None has considered the role of the East Antarctic ice sheet in detail. We use a denudation—flexural model to examine the isostatic response of the continental margin to glacial erosion to determine whether glacial processes have played a role in forcing mountain uplift. The conclusion is that, although there are insufficient data formally to delimit the role of glacial erosion, available geophysical and geomorphological data are not inconsistent with the results of the differential denudation model, providing certain conditions are met. These results indicate that the current topography of the Transantarctic Mountains can be simulated, in part, from the isostatic response of the lithosphere to glacial erosion. The short wavelength and high amplitude of the Transantarctic Mountains do not require a low flexural rigidity in the unrated lithosphere, provided there is a fast escarpment retreat from the rift hinge, high escarpment denudation rates and a large differential in denudation between the coastal zone and the interior.

1996 ◽  
Vol 23 ◽  
pp. 303-308 ◽  
Author(s):  
Andrew Kerr ◽  
Alan Gilchrist

Modelling studies of the tectonic evolution of the Transantarctic Mountains in Antarctica have drawn differing conclusions as to the primary mechanisms involved. None has considered the role of the East Antarctic ice sheet in detail. We use a denudation—flexural model to examine the isostatic response of the continental margin to glacial erosion to determine whether glacial processes have played a role in forcing mountain uplift.The conclusion is that, although there are insufficient data formally to delimit the role of glacial erosion, available geophysical and geomorphological data are not inconsistent with the results of the differential denudation model, providing certain conditions are met. These results indicate that the current topography of the Transantarctic Mountains can be simulated, in part, from the isostatic response of the lithosphere to glacial erosion. The short wavelength and high amplitude of the Transantarctic Mountains do not require a low flexural rigidity in the unrated lithosphere, provided there is a fast escarpment retreat from the rift hinge, high escarpment denudation rates and a large differential in denudation between the coastal zone and the interior.


2016 ◽  
Vol 4 (4) ◽  
pp. 895-909 ◽  
Author(s):  
Jean L. Dixon ◽  
Friedhelm von Blanckenburg ◽  
Kurt Stüwe ◽  
Marcus Christl

Abstract. What is the influence of glacial processes in driving erosion and uplift across the European Alps? It has largely been argued that repeated erosion and glaciation sustain isostatic uplift and topography in a decaying orogen. But some parts of the Alps may still be actively uplifting via deep lithospheric processes. We add insight to this debate by isolating the role of post-glacial topographic forcing on erosion rates. To do this, we quantify the topographic signature of past glaciation on millennial-scale erosion rates in previously glaciated and unglaciated catchments at the easternmost edge of the Austrian Alps. Newly measured catchment-wide erosion rates, determined from cosmogenic 10Be in river-borne quartz, correlate with basin relief and mean slope. GIS-derived slope–elevation and slope–area distributions across catchments provide clear topographic indicators of the degree of glacial preconditioning, which further correlates with erosion rates. Erosion rates in the easternmost, non-glaciated basins range from 40 to 150 mm ky−1 and likely reflect underlying tectonic forcings in this region, which have previously been attributed to recent (post 5 Ma) uplift. By contrast, erosion rates in previously glaciated catchments range from 170 to 240 mm ky−1 and reflect the erosional response to local topographic preconditioning by repeated glaciations. Together, these data suggest that Holocene erosion across the Eastern Alps is strongly shaped by the local topography relict from previous glaciations. Broader, landscape-wide forcings, such as the widely debated deep mantle-driven or isostatically driven uplift, result in lesser controls on both topography and erosion rates in this region. Comparing our data to previously published erosion rates across the Alps, we show that post-glacial erosion rates vary across more than 2 orders of magnitude. This high variation in post-glacial erosion may reflect combined effects of direct tectonic and modern climatic forcings but is strongly overprinted by past glacial climate and its topographic legacy.


2016 ◽  
Author(s):  
Jean L. Dixon ◽  
Friedhelm von Blanckenburg ◽  
Kurt Stüwe ◽  
Marcus Cristl

Abstract. What is the influence of glacial processes in driving erosion and uplift across the European Alps? It has largely been argued that repeated erosion through glaciation sustains isostatic uplift and topography in a decaying orogen. But, some insist that the Alps are an orogen still actively uplifting (e.g., Hergarten et al., 2010). We add insight to this debate by isolating the role of post-glacial topographic forcing on erosion rates. To do this, we quantify the topographic signature of past glaciation on millennial scale erosion rates in previously glaciated and unglaciated catchments at the easternmost edge of the Austrian Alps. Newly measured catchment-wide erosion rates, determined from cosmogenic 10Be in river-borne quartz, correlate with basin relief and mean slope. GIS-derived slope-elevation and slope-area distributions across catchments provide clear topographic indicators of the degree of glacial preconditioning, which further correlates with erosion rates. Erosion rates in the eastern-most, non-glaciated basins range from 40 to 150 mm/ky and likely reflect underlying tectonic forcings in this region, which have previously been attributed to recent (post 5 Ma) uplift (Legrain et al., 2015). By contrast, erosion rates in previously glaciated catchments range from 170 to 240 mm/ky and reflect the erosional response to local topographic preconditioning by repeated glaciations. Together, these data suggest that Holocene erosion across the Eastern Alps is strongly shaped by the local topography relict from previous glaciations. Broader, landscape-wide forcings, such as the widely debated deep mantle-driven or isostatically-driven uplift, result in lesser controls on both topography and erosion rates in this region. Comparing our data to previously published erosion rates across the Alps, we show that post-glacial erosion rates vary across more than two orders of magnitude with poor topographic indicators of controls. This high variation in post-glacial erosion may reflect combined effects of direct tectonic and modern climatic forcings, but is strongly overprinted by past glacial climate and its topographic legacy.


2020 ◽  
Author(s):  
Bailey Nordin ◽  
◽  
Stephen E. Cox ◽  
Sidney Hemming ◽  
Stuart N. Thomson ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jose Luis Diaz-Hernandez ◽  
Antonio Jose Herrera-Martinez

At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions.


2020 ◽  
Vol 8 (3) ◽  
pp. 637-659
Author(s):  
David Mair ◽  
Alessandro Lechmann ◽  
Romain Delunel ◽  
Serdar Yeşilyurt ◽  
Dmitry Tikhomirov ◽  
...  

Abstract. Denudation of steep rockwalls is driven by rock fall processes of various sizes and magnitudes. Rockwalls are sensitive to temperature changes mainly because thermo-cryogenic processes weaken bedrock through fracturing, which can precondition the occurrence of rock fall. However, it is still unclear how the fracturing of rock together with cryogenic processes impacts the denudation processes operating on steep rockwalls. In this study, we link data on long-term rockwall denudation rates at the Eiger (Central Swiss Alps) with the local bedrock fabric and the reconstructed temperature conditions at these sites, which depend on the insolation pattern. We then estimate the probability of bedrock for failure through the employment of a theoretical frost cracking model. The results show that the denudation rates are low in the upper part of the NW rockwall, but they are high both in the lower part of the NW rockwall and on the SE face, despite similar bedrock fabric conditions. The frost cracking model predicts a large difference in cracking intensity from ice segregation where the inferred efficiency is low in the upper part of the NW rockwall but relatively large on the lower section of the NW wall and on the SE rock face of the Eiger. We explain this pattern by the differences in insolation and temperature conditions at these sites. Throughout the last millennium, temperatures in bedrock have been very similar to the present. These data thus suggest the occurrence of large contrasts in microclimate between the NW and SE walls of the Eiger, conditioned by differences in insolation. We use these contrasts to explain the relatively low denudation rates in the upper part of the NW rockwall and the rapid denudation in the SW face and in the lower part of the NW rock face where frost cracking is more efficient.


2019 ◽  
Vol 7 (2) ◽  
pp. 393-410 ◽  
Author(s):  
Renee van Dongen ◽  
Dirk Scherler ◽  
Hella Wittmann ◽  
Friedhelm von Blanckenburg

Abstract. Concentrations of in-situ-produced cosmogenic 10Be in river sediment are widely used to estimate catchment-average denudation rates. Typically, the 10Be concentrations are measured in the sand fraction of river sediment. However, the grain size of bedload sediment in most bedrock rivers covers a much wider range. Where 10Be concentrations depend on grain size, denudation rate estimates based on the sand fraction alone are potentially biased. To date, knowledge about catchment attributes that may induce grain-size-dependent 10Be concentrations is incomplete or has only been investigated in modelling studies. Here we present an empirical study on the occurrence of grain-size-dependent 10Be concentrations and the potential controls of hillslope angle, precipitation, lithology, and abrasion. We first conducted a study focusing on the sole effect of precipitation in four granitic catchments located on a climate gradient in the Chilean Coastal Cordillera. We found that observed grain size dependencies of 10Be concentrations in the most-arid and most-humid catchments could be explained by the effect of precipitation on both the scouring depth of erosion processes and the depth of the mixed soil layer. Analysis of a global dataset of published 10Be concentrations in different grain sizes (n=73 catchments) – comprising catchments with contrasting hillslope angles, climate, lithology, and catchment size – revealed a similar pattern. Lower 10Be concentrations in coarse grains (defined as “negative grain size dependency”) emerge frequently in catchments which likely have thin soil and where deep-seated erosion processes (e.g. landslides) excavate grains over a larger depth interval. These catchments include steep (> 25∘) and humid catchments (> 2000 mm yr−1). Furthermore, we found that an additional cause of negative grain size dependencies may emerge in large catchments with weak lithologies and long sediment travel distances (> 2300–7000 m, depending on lithology) where abrasion may lead to a grain size distribution that is not representative for the entire catchment. The results of this study can be used to evaluate whether catchment-average denudation rates are likely to be biased in particular catchments.


2018 ◽  
Author(s):  
Renee van Dongen ◽  
Dirk Scherler ◽  
Hella Wittmann ◽  
Friedhelm von Blanckenburg

Abstract. Concentrations of in situ-produced cosmogenic 10Be in river sediment are widely used to estimate catchment-average denudation rates. Typically, the 10Be concentrations are measured in the sand fraction of river sediment. However, the grain size of bedload sediment in most bedrock rivers cover a much wider range. Where 10Be concentrations depend on grain size, denudation rate estimates based on the sand fraction alone could potentially be biased. To date, knowledge about catchment attributes that may induce grain size-dependent 10Be concentrations is incomplete or has only been investigated in modelling studies. Here we present an empirical study on the occurrence of grain size-dependent 10Be concentrations and the potential controls of hillslope angle, precipitation, lithology and abrasion. We first conducted a study focusing on the sole effect of precipitation in four granitic catchments located on a climate-gradient in the Chilean Coastal Cordillera. We found that observed grain size dependencies of 10Be concentrations in the most-arid and most-humid catchments could be explained by the effect of precipitation on both the scouring depth of erosion processes and the depth of the mixed soil layer. Analysis of a global dataset of published 10Be concentrations in different grain sizes (n=62 catchments), comprising catchments with contrasting hillslope angles, climate, lithology and catchment size revealed a similar pattern. Lower 10Be concentrations in coarse grains (defined as negative grain size dependency) emerge frequently in catchments which likely have thin soil and where deep-seated erosion processes (e.g. landslides) excavate grains over a larger depth-interval. These catchments include steep (>25°), arid (<100 mm yr−1) and humid catchments (>2000 mm yr−1). Furthermore, we found that an additional cause of negative grain size dependencies may emerge in large catchments with long sediment travel distances (>2300–7000 m, depending on lithology) where abrasion and sediment provenance may lead to a grain size distribution that is not representative for the entire catchment. The results of this study can be used to evaluate whether catchment-average denudation rates are likely to be biased in particular catchments.


Sign in / Sign up

Export Citation Format

Share Document