scholarly journals X-ray diagnostics of dense plasmas produced by high-energy heavy ions

1995 ◽  
Vol 13 (2) ◽  
pp. 183-190 ◽  
Author(s):  
W. Laux ◽  
J. Jacoby ◽  
D.H.H. Hoffmann

Plasmas with solid-state density at temperatures of a few eV will be produced in the near future at GSI by high-energy heavy ions. To diagnose these plasmas, novel methods–based on hard X-ray diagnostics–have to be applied. An investigation of the hydrodynamic expansion of the target requires a space- and time-resolved measurement of the plasma density. The determination of the target density independently of its temperature is obtained by a special X-ray pinhole camera enabling a selective registration of the target K-shell emission in combination with space- and time-resolved beam intensity measurements.

1990 ◽  
Vol 68 (6) ◽  
pp. 2719-2722 ◽  
Author(s):  
A. Matsumuro ◽  
M. Kobayashi ◽  
T. Kikegawa ◽  
M. Senoo

1998 ◽  
Vol 16 (2) ◽  
pp. 253-265 ◽  
Author(s):  
G. Thiell ◽  
R. Bailly-Salins ◽  
J.L. Bruneau ◽  
G. Coulaud ◽  
P. Estraillier ◽  
...  

The Precision Phebus program, started in 1993, emphasizes a series of laser and target experiment objectives on the two-beam Phebus Nd-phosphate glass laser. Recently, three major objectives that are also very important issues for megajoule-class lasers have been met: First, the balance of the incident beam-to-beam 3ω power is shown to be in the range from 5 to 12% for 3-ns, 3ω-shaped pulses of reproducible high-energy shots; second, the smoothing uniformity of the laser energy deposited on the target, that is, the contrast of the spatial beam modulations, can be kept lower than 5%; and, finally, the tight control of the beam targeting leads to a pointing precision of less than 10 μrd on the target at the target chamber center (TCC) and of 80 μrd on X-ray sources located up to 3 cm from the TCC to improve the space- and time-resolved X-ray shadowgraphy techniques performed for target physics experiments such as implosion and hydrodynamical instability studies.


1999 ◽  
Vol 567 ◽  
Author(s):  
Z. Yu ◽  
R. Droopad ◽  
J. Ramdani ◽  
J.A. Curless ◽  
C.D. Overgaard ◽  
...  

ABSTRACTSingle crystalline perovskite oxides such as SrTiO3 (STO) are highly desirable for future generation ULSI applications. Over the past three decades, development of crystalline oxides on silicon has been a great technological challenge as an amorphous silicon oxide layer forms readily on the Si surface when exposed to oxygen preventing the intended oxide heteroepitaxy on Si substrate. Recently, we have successfully grown epitaxial STO thin films on Si(001) surface by using molecular beam epitaxy (MBE) method. Properties of the STO films on Si have been characterized using a variety of techniques including in-situ reflection high energy electron diffraction (RHEED), ex-situ X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) and atomic force microscopy (AFM). The STO films grown on Si(001) substrate show bright and streaky RHEED patterns indicating coherent two-dimensional epitaxial oxide film growth with its unit cell rotated 450 with respect to the underlying Si unit cell. RHEED and XRD data confirm the single crystalline nature and (001) orientation of the STO films. An X-ray pole figure indicates the in-plane orientation relationship as STO[100]//Si[110] and STO(001)// Si(001). The STO surface is atomically smooth with AFM rms roughness of 1.2 AÅ. The leakage current density is measured to be in the low 10−9 A/cm2 range at 1 V, after a brief post-growth anneal in O2. An interface state density Dit = 4.6 × 1011 eV−1 cm−2 is inferred from the high-frequency and quasi-static C-V characteristics. The effective oxide thickness for a 200 Å STO film is around 30 Å and is not sensitive to post-growth anneal in O2 at 500-700°C. These STO films are also robust against forming gas anneal. Finally, STO MOSFET structures have been fabricated and tested. An extrinsic carrier mobility value of 66 cm2 V−11 s−1 is obtained for an STO PMOS device with a 2 μm effective gate length.


2009 ◽  
Vol 42 (3) ◽  
pp. 392-400 ◽  
Author(s):  
I. B. Ramsteiner ◽  
A. Schöps ◽  
H. Reichert ◽  
H. Dosch ◽  
V. Honkimäki ◽  
...  

Diffuse X-ray scattering has been an important tool for understanding the atomic structure of binary systems for more than 50 years. The majority of studies have used laboratory-based sources providing 8 keV photons or synchrotron radiation with similar energies. Diffuse scattering is weak, with the scattering volume determined by the X-ray absorption length. In the case of 8 keV photons, this is not significantly different from the typical extinction length for Bragg scattering. If, however, one goes to energies of the order of 100 keV the scattering volume for the diffuse scattering increases up to three orders of magnitude while the extinction length increases by only one order of magnitude. This leads to a gain of two orders of magnitude in the relative intensity of the diffuse scattering compared with the Bragg peaks. This gain, combined with the possibility of recording the intensity from an entire plane in reciprocal space using a two-dimensional X-ray detector, permits time-resolved diffuse scattering studies in many systems. On the other hand, diffraction features that are usually neglected, such as multiple scattering, come into play. Four types of multiple scattering phenomena are discussed, and the manner in which they appear in high-energy diffraction experiments is considered.


1984 ◽  
Vol 35 ◽  
Author(s):  
J.Z. Tischler ◽  
B.C. Larson ◽  
D.M. Mills

ABSTRACTSynchrotron x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) have been used to carry out nanosecond resolution measurements of the temperature distrubutions in Ge during UV pulsed-laser irradiation. KrF (249 nm) laser pulses of 25 ns FWHM with an energy density of 0.6 J/cm2 were used. The temperatures were determined from x-ray Bragg profile measurements of thermal expansion induced strain on <111> oriented Ge. The data indicate the presence of a liquid-solid interface near the melting point, and large (1500-4500°C/pm) temperature gradients in the solid; these Ge results are analagous to previous ones for Si. The measured temperature distributions are compared with those obtained from heat flow calculations, and the overheating and undercooling of the interface relative to the equilibrium melting point are discussed.


Sign in / Sign up

Export Citation Format

Share Document