X‐ray determination of the Debye temperature at high pressure using high‐energy synchrotron radiation

1990 ◽  
Vol 68 (6) ◽  
pp. 2719-2722 ◽  
Author(s):  
A. Matsumuro ◽  
M. Kobayashi ◽  
T. Kikegawa ◽  
M. Senoo
2009 ◽  
Vol 53 (1-2) ◽  
pp. 3-16 ◽  
Author(s):  
A. Kromm ◽  
Th. Kannengiesser ◽  
J. Gibmeier ◽  
Ch. Genzel ◽  
V. van der Mee

1998 ◽  
Vol 5 (3) ◽  
pp. 1023-1025 ◽  
Author(s):  
Yoshinori Katayama ◽  
Kazuhiko Tsuji ◽  
Osamu Shimomura ◽  
Takumi Kikegawa ◽  
Mohamed Mezouar ◽  
...  

A new method for density measurements by means of X-ray absorption under high pressure and high temperature using synchrotron radiation has been developed. The method has been modified for a large-volume Paris–Edinburgh press and combined with intense high-energy X-rays at the ESRF. In order to overcome effects of deformation of sample shape under pressure, a ruby cylinder was used as a sample container. The density was determined from the intensity profile of transmitted X-rays. The densities of crystalline and liquid Bi were successfully measured up to 750 K at 1 GPa.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2003 ◽  
Vol 321 (2-3) ◽  
pp. 221-232 ◽  
Author(s):  
A Yilmazbayhan ◽  
O Delaire ◽  
A.T Motta ◽  
R.C Birtcher ◽  
J.M Maser ◽  
...  

1969 ◽  
Vol 36 (1) ◽  
pp. 135-142 ◽  
Author(s):  
R. Colella ◽  
D. Dragone ◽  
A. Merlini

2013 ◽  
Vol 772 ◽  
pp. 193-199 ◽  
Author(s):  
Carsten Ohms ◽  
Rene V. Martins

Bi-metallic piping welds are frequently used in light water nuclear reactors to connect ferritic steel pressure vessel nozzles to austenitic stainless steel primary cooling piping systems. An important aspect for the integrity of such welds is the presence of residual stresses. Measurement of these residual stresses presents a considerable challenge because of the component size and because of the material heterogeneity in the weld regions. The specimen investigated here was a thin slice cut from a full-scale bi-metallic piping weld mock-up. A similar mock-up had previously been investigated by neutron diffraction within a European research project called ADIMEW. However, at that time, due to the wall thickness of the pipe, stress and spatial resolution of the measurements were severely restricted. One aim of the present investigations by high energy synchrotron radiation and neutrons used on this thin slice was to determine whether such measurements would render a valid representation of the axial strains and stresses in the uncut large-scale structure. The advantage of the small specimen was, apart from the easier manipulation, the fact that measurement times facilitated a high density of measurements across large parts of the test piece in a reasonable time. Furthermore, the recording of complete diffraction patterns within the accessible diffraction angle range by synchrotron X-ray diffraction permitted mapping the texture variations. The strain and stress results obtained are presented and compared for the neutron and synchrotron X-ray diffraction measurements. A strong variation of the texture pole orientations is observed in the weld regions which could be attributed to individual weld torch passes. The effect of specimen rocking on the scatter of the diffraction data in the butt weld region is assessed during the neutron diffraction measurements.


2017 ◽  
Vol 73 (8) ◽  
pp. 702-709 ◽  
Author(s):  
Hisashi Naitow ◽  
Yoshinori Matsuura ◽  
Kensuke Tono ◽  
Yasumasa Joti ◽  
Takashi Kameshima ◽  
...  

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein–ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.


Sign in / Sign up

Export Citation Format

Share Document