scholarly journals Light emission from particle beam induced plasma: An overview

2012 ◽  
Vol 30 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Andreas Ulrich

AbstractExperiments to study the light emission from plasma produced by particle beams are presented. Fundamental aspects in comparison with discharge plasma formation are discussed. It is shown that the formation of excimer molecules is an important process. This paper summarizes various studies of particle beam induced light emission and presents the first results of a direct comparison of light emission induced by electron- and ion beam excitation. Both high energy heavy ion beam and low energy electron beam experiments are described and an overview over applications in the form of light sources, lasers, and ionization devices is given.

Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2005 ◽  
Vol 908 ◽  
Author(s):  
Gary A. Glass ◽  
Bibhudutta Rout ◽  
Alexander D. Dymnikov ◽  
Elia V. Eschenazi ◽  
Richard Greco ◽  
...  

AbstractAn overview of the present state of high energy focused ion beam (HEFIB) system technology, nanoprobe system design and specific ion beam writing applications will be presented. In particular, the combination of P-beam, heavy-ion writing and ion implantation to produce microstructures in resists and silicon will be demonstrated.Heretofore, the development of HEFIB technology worldwide has progressed through a series of developments at independent research facilities, each having relatively narrow and mostly isolated, research purposes. However, a complete, versatile HEFIB nanoprobe system capable of both analysis and modification will require the combination of several component systems, each with specialized technology, and significant advances in the design of a complete system can only be expected from an effort that includes a coordinated development of the component parts.


2002 ◽  
Vol 20 (3) ◽  
pp. 435-440 ◽  
Author(s):  
P.A. SEIDL ◽  
D. BACA ◽  
F.M. BIENIOSEK ◽  
A. FALTENS ◽  
S.M. LUND ◽  
...  

The High Current Experiment (HCX) is being assembled at Lawrence Berkeley National Laboratory as part of the U.S. program to explore heavy ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy ion beams at high space-charge intensity (line-charge density ∼ 0.2 μC/m) over long pulse durations (>4 μs). This machine will test transport issues at a driver-relevant scale resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, lost-particle induced electron effects, and longitudinal bunch control. We present the first experimental results carried out with the coasting K+ ion beam transported through the first 10 electrostatic transport quadrupoles and associated diagnostics. Later phases of the experiment will include more electrostatic lattice periods to allow more sensitive tests of emittance growth, and also magnetic quadrupoles to explore similar issues in magnetic channels with a full driver scale beam.


Author(s):  
Yongtao Zhao ◽  
Rui Cheng ◽  
Yuyu Wang ◽  
Xianming Zhou ◽  
Yu Lei ◽  
...  

Abstract Recent research activities relevant to high energy density physics (HEDP) driven by the heavy ion beam at the Institute of Modern Physics, Chinese Academy of Sciences are presented. Radiography of static objects with the fast extracted high energy carbon ion beam from the Cooling Storage Ring is discussed. Investigation of the low energy heavy ion beam and plasma interaction is reported. With HEDP research as one of the main goals, the project HIAF (High Intensity heavy-ion Accelerator Facility), proposed by the Institute of Modern Physics as the 12th five-year-plan of China, is introduced.


1995 ◽  
Vol 13 (2) ◽  
pp. 231-241 ◽  
Author(s):  
J.J. MacFarlane ◽  
P. Wang ◽  
J.E. Bailey ◽  
T.A. Mehlhorn ◽  
R.J. Dukart

Kα satellite spectroscopy can be a valuable technique for diagnosing conditions in high energy density plasmas. Kα emission lines are produced in intense light ion beam plasma interaction experiments as 2p electrons fill partially open Is shells created by the ion beam. In this paper, we present results from collisional-radiative equilibrium (CRE) calculations which show how Kα emission spectroscopy can be used to determine target plasma conditions in intense lithium beam experiments on Particle Beam Fusion Accelerator-II (PBFAII) at Sandia National Laboratories. In these experiments, 8–10 MeV lithium beams with intensities of 1–2 TW/cm2 irradiate planar multilayer targets containing a thin Al tracer. Kα emission spectra are measured using an X-ray crystal spectrometer with a resolution of λ/∆λ = 1200. The spectra are analyzed using a CRE model in which multilevel (NL ∼ 103) statistical equilibrium equations are solved self-consistently with the radiation field and beam properties to determine atomic level populations. Atomic level-dependent fluorescence yields and ion-impact ionization cross sections are used in computing the emission spectra. We present results showing the sensitivity of the Kα emission spectrum to temperature and density of the Al tracer. We also discuss the dependence of measured spectra on the X-ray crystal spectral resolution, and how additional diagnostic information could be obtained using multiple tracers of similar atomic number.


2013 ◽  
Author(s):  
Hideshi Muto ◽  
Yukimitsu Ohshiro ◽  
Katsunori Kawasaki ◽  
Michihiro Oyaizu ◽  
Toshiyuki Hattori

2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


Author(s):  
Bibhudutta Rout ◽  
Alexander D. Dymnikov ◽  
Daniel P. Zachry ◽  
Elia V. Eschenazi ◽  
Yongqiang Q. Wang ◽  
...  

2020 ◽  
Vol 232 ◽  
pp. 01005
Author(s):  
S. Shaharuddin ◽  
J. Stuchbery ◽  
E. C. Simpson ◽  
Z. K. Gan ◽  
A. C. Green ◽  
...  

Radiotherapy using protons and heavier ions is emerging as an alternative to traditional photon radiotherapy for cancer treatment. Ions have a depth-dose profile that results in high energy deposition at the end of the particle’s path, with a relatively low dosage elsewhere. However, the specifics of ion interactions with cellular biology are not yet fully understood. To study the induced biological effects of the ions on cell cultures, an external beam is required as biological specimens cannot be placed in vacuum. The Heavy Ion Accelerator Facility (HIAF) at the Australian National University hosts accelerators for a wide variety of ion-beam research applications. However, HIAF does not currently have an external beam capability. Here, we present an initial design for a radiobiological research capability at HIAF. A systems engineering approach was used to develop the architecture of the apparatus and determine the feasibility of adapting the current facilities to external beam applications. This effort included ion optics calculations, coupled to a Geant4 simulation, to characterise ion beam transitions through a thin window into the air. The beam spread, intensity distributions, and energy of proton and carbon ions were studied as a function of distance travelled from the window, as well as the effects of alternative window materials and thicknesses. It was determined that the proposed line at the HIAF would be suitable for the desired applications. Overall, this feasibility study lays the foundations of an external beam design, a simulation test framework, and the basis for a grant application for an external beam at the HIAF.


2012 ◽  
Vol 30 (4) ◽  
pp. 679-706 ◽  
Author(s):  
Yongtao Zhao ◽  
Zhanghu Hu ◽  
Rui Cheng ◽  
Yuyu Wang ◽  
Haibo Peng ◽  
...  

AbstractIn this work, we review current trends in China to investigate beam plasma interaction phenomena. Recent progresses in China on low energy heavy ions and plasma interaction, ion beam-plasma interactions under the influences of magnetic fields, high energy heavy ion radiography through marginal range method, energy deposition of highly charged ions on surfaces and Raman spectroscopy of surfaces after irradiation of highly charged ions are presented.


Sign in / Sign up

Export Citation Format

Share Document