scholarly journals Dispersion relation of low-frequency electrostatic waves in plasmas with relativistic electrons

2016 ◽  
Vol 34 (1) ◽  
pp. 178-186 ◽  
Author(s):  
B. Touil ◽  
A. Bendib ◽  
K. Bendib-Kalache ◽  
C. Deutsch

AbstractThe dispersion relation of electrostatic waves with phase velocities smaller than the electron thermal velocity is investigated in relativistic temperature plasmas. The model equations are the electron relativistic collisionless hydrodynamic equations and the ion non-relativistic Vlasov equation, coupled to the Poisson equation. The complex frequency of electrostatic modes are calculated numerically as a function of the relevant parameters kλDe and ZTe/Ti where k is the wavenumber, λDe, the electron Debye length, Te and Ti the electron and ion temperature, and Z, the ion charge number. Useful analytic expressions of the real and imaginary parts of frequency are also proposed. The non-relativistic results established in the literature from the kinetic theory are recovered and the role of the relativistic effects on the dispersion and the damping rate of electrostatic modes is discussed. In particular, it is shown that in highly relativistic regime the electrostatic waves are strongly damped.

2018 ◽  
Vol 84 (1) ◽  
Author(s):  
C. A. A. de Carvalho ◽  
D. M. Reis

We compute the real and imaginary parts of the electric permittivities and magnetic permeabilities of relativistic electrons from quantum electrodynamics at finite temperatures and densities, for weak fields, neglecting electron–electron interactions. For non-zero temperatures, electromagnetic responses are reduced to one-dimensional integrals computed numerically. For zero temperature, we find analytic expressions for both their real/dispersive and imaginary/absorptive parts. As an application of our results, we obtain the dispersion relation for longitudinal electric plasmons. Present calculations support our recent claim that, at low frequencies and long wavelengths, the system will exhibit simultaneously negative electric and magnetic responses.


1986 ◽  
Vol 35 (3) ◽  
pp. 393-412 ◽  
Author(s):  
R. Bharuthram ◽  
M. A. Hellberg

Numerical solutions of a dispersion relation for low-frequency electrostatic waves in a current-carrying, cold, weakly collisional, magnetized two-ion plasma are used to discuss the two-stream and resistive natures of the ion-ion hybrid instability. An instability with analogous behaviour is found to be associated with the light ion cyclotron frequency. Analytical results explain the behaviour. A numerically derived transition diagram summarizes the parameter values for which transitions between different modes take place.


1988 ◽  
Vol 39 (3) ◽  
pp. 503-510
Author(s):  
Joseph E. Willett ◽  
Hsi-Shu Wu

An eigenvalue equation is derived for electrostatic waves with frequencies below the ion bounce frequency in a plasma confined by a magnetic quadrupole. This integral equation for the electrostatic potential is developed to second order in the curvature and contains the effects of electron and ion temperature gradients. A dispersion equation for flute modes is derived from it. The present theory applied to the private flux region of the UMIST quadrupole predicts that low-frequency flute modes will propagate in the electron and ion diamagnetic drift directions.


1991 ◽  
Vol 69 (2) ◽  
pp. 102-106
Author(s):  
A. Hirose

Analysis, based on a local kinetic dispersion relation in the tokamak magnetic geometry incorporating the ion transit frequency and trapped electrons, indicates that modes with positive frequencies are predominant. Unstable "drift"-type modes can have frequencies well above the diamagnetic frequency. They have been identified as the destabilized ion acoustic mode suffering little ion Landau damping even when [Formula: see text].


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Luca Buoninfante ◽  
Gaetano Lambiase ◽  
Luciano Petruzziello

AbstractIn this paper, we study the phenomenon of quantum interference in the presence of external gravitational fields described by alternative theories of gravity. We analyze both non-relativistic and relativistic effects induced by the underlying curved background on a superposed quantum system. In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm–Aharonov effect, which results in a phase shift proportional to the derivative of the modified Newtonian potential. On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial rôle. Indeed, the existence of a gravitational time dilation between the two arms of the interferometer causes a loss of coherence that is in principle observable in quantum interference patterns. We work in the context of generalized quadratic theories of gravity to compare their physical predictions with the analogous outcomes in general relativity. In so doing, we show that the decoherence rate strongly depends on the gravitational model under investigation, which means that this approach turns out to be a promising test bench to probe and discriminate among all the extensions of Einstein’s theory in future experiments.


1994 ◽  
Vol 51 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Chandu Venugopal ◽  
P. J. Kurian ◽  
G. Renuka

We derive a dispersion relation for the perpendicular propagation of ioncyclotron waves around the ion gyrofrequency ω+ in a weaklu relaticistic anisotropic Maxwellian plasma. These waves, with wavelength greater than the ion Larmor radius rL+ (k⊥ rL+ < 1), propagate in a plasma characterized by large ion plasma frequencies (). Using an ordering parameter ε, we separated out two dispersion relations, one of which is independent of the relativistic terms, while the other depends sensitively on them. The solutions of the former dispersion relation yield two modes: a low-frequency (LF) mode with a frequency ω < ω+ and a high-frequency (HF) mode with ω > ω+. The plasma is stable to the propagation of these modes. The latter dispersion relation yields a new LF mode in addition to the modes supported by the non-relativistic dispersion relation. The two LF modes can coalesce to make the plasma unstable. These results are also verified numerically using a standard root solver.


2009 ◽  
Vol 27 (1) ◽  
pp. 381-394 ◽  
Author(s):  
P. J. G. Perron ◽  
J.-M. A. Noël ◽  
J.-P. St.-Maurice

Abstract. We have studied how the presence of collisions affects the behavior of instabilities triggered by a combination of shears and parallel currents in the ionosphere under a variety of ion to electron temperature ratios. To this goal we have numerically solved a kinetic dispersion relation, using a relaxation model to describe the effects of ion and electron collisions. We have compared our solutions to expressions derived in a fluid limit which applied only to large electron to ion temperature ratios. We have limited our study to threshold conditions for the current density and the shears. We have studied how the threshold varies as a function of the wave-vector angle direction and as a function of frequency. As expected, we have found that for low frequencies and/or elevated ion to electron temperature ratios, the kinetic dispersion relation has to be used to evaluate the threshold conditions. We have also found that ion velocity shears can significantly lower the field-aligned threshold current needed to trigger the instability, especially for wave-vectors close to the perpendicular to the magnetic field. However the current density and shear requirements remain significantly higher than if collisions are neglected. Therefore, for ionospheric F-region applications, the effect of collisions should be included in the calculation of instabilities associated with horizontal shears in the vertical flow. Furthermore, in many situations of interest the kinetic solutions should be used instead of the fluid limit, in spite of the fact that the latter can be shown to produce qualitatively valid solutions.


Author(s):  
Marta Spinelli ◽  
Gianni Bernardi ◽  
Mario G Santos

Abstract Global (i.e. sky-averaged) 21 cm signal experiments can measure the evolution of the universe from the Cosmic Dawn to the Epoch of Reionization. These measurements are challenged by the presence of bright foreground emission that can be separated from the cosmological signal if its spectrum is smooth. This assumption fails in the case of single polarization antennas as they measure linearly polarized foreground emission - which is inevitably Faraday rotated through the interstellar medium. We investigate the impact of Galactic polarized foregrounds on the extraction of the global 21 cm signal through realistic sky and dipole simulations both in a low frequency band from 50 to 100 MHz, where a 21 cm absorption profile is expected, and in a higher frequency band (100 − 200 MHz). We find that the presence of a polarized contaminant with complex frequency structure can bias the amplitude and the shape of the reconstructed signal parameters in both bands. We investigate if polarized foregrounds can explain the unexpected 21 cm Cosmic Dawn signal recently reported by the EDGES collaboration. We find that unaccounted polarized foreground contamination can produce an enhanced and distorted 21 cm absorption trough similar to the anomalous profile reported by Bowman et al. (2018), and whose amplitude is in mild tension with the assumed input Gaussian profile (at ∼1.5σ level). Moreover, we note that, under the hypothesis of contamination from polarized foreground, the amplitude of the reconstructed EDGES signal can be overestimated by around 30%, mitigating the requirement for an explanation based on exotic physics.


Sign in / Sign up

Export Citation Format

Share Document