Blend of independent joint control and variable structure systems for uni-drive modular robots

Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Hamidreza Karbasi ◽  
Jan Paul Huissoon ◽  
Amir Khajepour

SUMMARYIn this paper, a control design methodology for a new class of modular robots, so-called “uni-drive modular robots” is introduced. Uni-drive modular robots have a substantial advantage over regular modular robots in terms of the mass of each module since then employ only a single drive for powering all the joints. The drive is mounted at the robot base and all joints tap power from this single drive using clutches. By controlling the engagement time of the clutches, the position and velocity of the joints are regulated. After reviewing the structure of the uni-drive modular robot, a self-expansion formula to generate the dynamics of the robot is introduced. The control of uni-drive n-module robots is realized by blending independent joint control and theory of variable structure systems via a pulse width modulation technique. A uni-drive modular robot is used to conduct simulations and validate the control design technique.

2005 ◽  
Vol 128 (4) ◽  
pp. 969-975 ◽  
Author(s):  
Hamidreza Karbasi ◽  
Amir Khajepour ◽  
Jan Paul Huissoon

In this paper, a control design methodology for the new class of modular robots so-called “unidrive modular robots” is introduced. Unidrive modular robots because of employing only a single drive for operating all the joints have a substantial advantage over regular modular robots in terms of the mass of each module. The drive is mounted at the robot base and all joints tap power from the single drive using clutches. By controlling the engagement time of the clutches, the position and velocity of the joints are regulated. In this work, a general state space model of the robot is first developed and then based on the theory of variable structure systems and sliding mode control a design methodology for local controllers is introduced. The control design technique is validated by experimental results.


2003 ◽  
Vol 13 (02) ◽  
pp. 427-451 ◽  
Author(s):  
L. BENADERO ◽  
A. EL AROUDI ◽  
G. OLIVAR ◽  
E. TORIBIO ◽  
E. GÓMEZ

One of the usual ways to build up mathematical models corresponding to a wide class of DC–DC converters is by means of piecewise linear differential equations. These models belong to a class of dynamical systems called Variable Structure Systems (VSS). From a classical design point of view, it is of interest to know the dynamical behavior of the system when some parameters are varied. Usually, Pulse Width Modulation (PWM) is adopted to control a DC–DC converter. When this kind of control is used, the resulting mathematical model is nonautonomous and periodic. In this case, the global Poincaré map (stroboscopic map) gives all the information about the system. The classical design in these electronic circuits is based on a stable periodic orbit which has some desired characteristics. In this paper, the main bifurcations which may undergo this orbit, when the parameters of the circuit change, are described. Moreover, it will be shown that in the three basic power electronic converters Buck, Boost and Buck–Boost, very similar scenarios are obtained. Also, some kinds of secondary bifurcations which are of interest for the global dynamical behavior are presented. From a dynamical systems point of view, VSS analyzed in this work present some kinds of bifurcations which are typical in nonsmooth systems and it is impossible to find them in smooth systems.


Author(s):  
Ahmed Khalil ◽  
Nicolas Fezans

AbstractGust load alleviation functions are mainly designed for two objectives: first, alleviating the structural loads resulting from turbulence or gust encounter, and hence reducing the structural fatigue and/or weight; and second, enhancing the ride qualities, and hence the passengers’ comfort. Whilst load alleviation functions can improve both aspects, the designer will still need to make design trade-offs between these two objectives and also between various types and locations of the structural loads. The possible emergence of affordable and reliable remote wind sensor techniques (e.g., Doppler LIDAR) in the future leads to considering new types of load alleviation functions as these sensors would permit anticipating the near future gusts and other types of turbulence. In this paper, we propose a preview control design methodology for the design of a load alleviation function with such anticipation capabilities, based on recent advancements on discrete-time reduced-order multi-channel $$H_\infty $$ H ∞ techniques. The methodology is illustrated on the DLR Discus-2c flexible sailplane model.


2010 ◽  
Vol 10 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

The performance of a drinking-water treatment plant is determined by the control of the plant. To design the appropriate control system, a control-design methodology of five design steps is proposed, which takes the treatment process characteristics into account. For each design step, the necessary actions are defined. Using the methodology for the pellet-softening treatment step, a new control scheme for the pellet-softening treatment step has been designed and implemented in the full-scale plant. The implementation resulted in a chemical usage reduction of 15% and reduction in the maintenance effort for this treatment step. Corrective actions of operators are no longer necessary.


Author(s):  
Robert O. Ambrose ◽  
Delbert Tesar

Abstract The ability to reconfigure automation equipment will reduce the manufacturing costs of obsolesence, training and maintenance while allowing for a faster response to changes in the product line. A modular philosophy will give the user these advantages, but only if based on a common connection standard. A mechanical connection was selected for the UT Modular Robotics Testbed and used in the designs of four robot joint modules and nine robot link modules. The standard was also used for assecories, such as the testand, loading fixtures and endeffectors. Three years of experiments with this connection standard are reviewed, and used as the basis for new connection designs. Experiments using multiple modules assembled as dextrous robots, as well as experiments focusing on the connection itself, will be described. Goals for future connection standards include designs with upward compatibility, combinations of both mechanical and electrical fittings, and robot triendly constraints that allow for automated or remote assembly of modular robots.


2018 ◽  
Vol 24 (9) ◽  
pp. 1511-1523 ◽  
Author(s):  
Antreas Kantaros ◽  
Olaf Diegel

Purpose This paper aims to discuss additive manufacturing (AM) in the context of applications for musical instruments. It examines the main AM technologies used in musical instruments, goes through a history of musical applications of AM and raises the questions about the application of AM to create completely new wind instruments that would be impossible to produce with conventional manufacturing. Design/methodology/approach A literature research is presented which covers a historical application of AM to musical instruments and hypothesizes on some potential new applications. Findings AM has found extensive application to create conventional musical instruments with unique aesthetics designs. It’s true potential to create entirely new sounds, however, remains largely untapped. Research limitations/implications More research is needed to truly assess the potential of additive manufacturing to create entirely new sounds for musical instrument. Practical implications The application of AM in music could herald an entirely new class of musical instruments with unique sounds. Originality/value This study highlights musical instruments as an unusual application of AM. It highlights the potential of AM to create entirely new sounds, which could create a whole new class of musical instruments.


Sign in / Sign up

Export Citation Format

Share Document