Modular Robot Connection Design

Author(s):  
Robert O. Ambrose ◽  
Delbert Tesar

Abstract The ability to reconfigure automation equipment will reduce the manufacturing costs of obsolesence, training and maintenance while allowing for a faster response to changes in the product line. A modular philosophy will give the user these advantages, but only if based on a common connection standard. A mechanical connection was selected for the UT Modular Robotics Testbed and used in the designs of four robot joint modules and nine robot link modules. The standard was also used for assecories, such as the testand, loading fixtures and endeffectors. Three years of experiments with this connection standard are reviewed, and used as the basis for new connection designs. Experiments using multiple modules assembled as dextrous robots, as well as experiments focusing on the connection itself, will be described. Goals for future connection standards include designs with upward compatibility, combinations of both mechanical and electrical fittings, and robot triendly constraints that allow for automated or remote assembly of modular robots.


2020 ◽  
Vol 17 (3) ◽  
pp. 427-435
Author(s):  
Mohamed Khalil Mezghiche ◽  
Noureddine Djedi

Purpose The purpose of this study is to explore using real-observation quantum genetic algorithms (RQGAs) to evolve neural controllers that are capable of controlling a self-reconfigurable modular robot in an adaptive locomotion task. Design/methodology/approach Quantum-inspired genetic algorithms (QGAs) have shown their superiority against conventional genetic algorithms in numerous challenging applications in recent years. The authors have experimented with several QGAs variants and real-observation QGA achieved the best results in solving numerical optimization problems. The modular robot used in this study is a hybrid simulated robot; each module has two degrees of freedom and four connecting faces. The modular robot also possesses self-reconfiguration and self-mobile capabilities. Findings The authors have conducted several experiments using different robot configurations ranging from a single module configuration to test the self-mobile property to several disconnected modules configuration to examine self-reconfiguration, as well as snake, quadruped and rolling track configurations. The results demonstrate that the robot was able to perform self-reconfiguration and produce stable gaits in all test scenarios. Originality/value The artificial neural controllers evolved using the real-observation QGA were able to control the self-reconfigurable modular robot in the adaptive locomotion task efficiently.



2011 ◽  
Vol 133 (09) ◽  
pp. 48-51
Author(s):  
Harry H. Cheng ◽  
Graham Ryland ◽  
David Ko ◽  
Kevin Gucwa ◽  
Stephen Nestinger

This article discusses the advantages of a modular robot that can reassemble itself for different tasks. Modular robots are composed of multiple, linked modules. Although individual modules can move on their own, the greatest advantage of modular systems is their structural reconfigurability. Modules can be combined and assembled to form configurations for specific tasks and then reassembled to suit other tasks. Modular robotic systems are also very well suited for dynamic and unpredictable application areas such as search and rescue operations. Modular robots can be reconfigured to suit various situations. Quite a number of modular robotic system prototypes have been developed and studied in the past, each containing unique geometries and capabilities. In some systems, a module only has one degree of freedom. In order to exhibit practical functionality, multiple interconnected modules are required. Other modular robotic systems use more complicated modules with two or three degrees of freedom. However, in most of these systems, a single module is incapable of certain fundamental locomotive behaviors, such as turning.



Author(s):  
Gangyuan Jing ◽  
Tarik Tosun ◽  
Mark Yim ◽  
Hadas Kress-Gazit

The advantage of modular robot systems lies in their flexibility, but this advantage can only be realized if there exists some reliable, effective way of generating configurations (shapes) and behaviors (controlling programs) appropriate for a given task. In this paper, we present an end-to-end system for addressing tasks with modular robots, and demonstrate that it is capable of accomplishing challenging multi-part tasks in hardware experiments. The system consists of four tightly integrated components: (1) A high-level mission planner, (2) A design library spanning a wide set of functionality, (3) A design and simulation tool for populating the library with new configurations and behaviors, and (4) Modular robot hardware. This paper condenses the material originally presented in Jing et al. 2016 into a shorter format suitable for a broad audience.



2019 ◽  
Vol 31 (5) ◽  
pp. 697-706
Author(s):  
Yukio Morooka ◽  
◽  
Ikuo Mizuuchi

If a robot system can take various shapes, then it can play various roles, such as humanoid, dog robot, and robot arm. A modular robot is a robot system in which robots are configured using multiple modules, and it is possible to configure robots of other shapes by varying the combinations of the modules. In conventional modular robots, the shape is restricted by gravity, and configurable shapes are limited. In this study, we propose a gravity compensation modular robot to solve this problem. This paper describes the design and prototyping of the gravity compensation modular robot, and provides examples of robot shapes configured using the gravity compensation modules and motion experiments of the robots. In the experiments, there were motions that the robots could perform and could not perform. We considered the lack in the gravity compensation level and module rigidity as the main factor of the failures. This paper also discusses the solutions to these problems.



Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Hamidreza Karbasi ◽  
Jan Paul Huissoon ◽  
Amir Khajepour

SUMMARYIn this paper, a control design methodology for a new class of modular robots, so-called “uni-drive modular robots” is introduced. Uni-drive modular robots have a substantial advantage over regular modular robots in terms of the mass of each module since then employ only a single drive for powering all the joints. The drive is mounted at the robot base and all joints tap power from this single drive using clutches. By controlling the engagement time of the clutches, the position and velocity of the joints are regulated. After reviewing the structure of the uni-drive modular robot, a self-expansion formula to generate the dynamics of the robot is introduced. The control of uni-drive n-module robots is realized by blending independent joint control and theory of variable structure systems via a pulse width modulation technique. A uni-drive modular robot is used to conduct simulations and validate the control design technique.



2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Kazi M. Hossain ◽  
Carl A. Nelson ◽  
Prithviraj Dasgupta

Modular robotics is a popular topic for robotic applications and design. The reason behind this popularity is the ability to use and reuse the same robot modules for accomplishing different tasks through reconfiguration. The robots are capable of self-reconfiguration based on the requirements of the task and environmental constraints. It is possible to have a large number of configuration combinations for the same set of modules. Therefore, it is important to identify unique configurations from among the full set of possible configurations and establish a kinematic strategy for each before reconfiguring the robots into a new shape. This becomes more difficult for robot units having more than one connection type and more degrees of freedom (DOF) For example, ModRED II modules have two types of connections and four DOF per module. In this paper, the set of configurations is enumerated, and determination of configuration isomorphism is accomplished for ModRED II modules using graph theory. Kinematic equations are then derived for unique configurations. The kinematic method is then demonstrated for certain example configurations using ModRED II modules.



Author(s):  
Chris E. Thorne ◽  
Paul J. White ◽  
Mark Yim

A bistable brake mechanism can be beneficial to the development of an energy efficient module for a modular reconfigurable robot. These robots are comprised of many repeated units. To date, research efforts have focused on increasing specific torque to expand the capabilities of modular robots. In this work, we present the continued development of energy efficient joint-locking mechanisms, specifically a piezoelectric actuator and a compliant transmission. The design and manufacturing of the mechanism is presented along with a model for predicting the static and dynamic behavior of the device. We also present experimental results that indicate better performance in terms of power consumption, specific torque, and bandwidth than is possible with comparable devices that utilize magnetic particles and electromagnetically-actuated disc and drum brakes. When fully implemented, this joint-locking mechanism will lead to three critical improvements in the area of modular robotics: decreased energy expenditure per non-active module, increased ability to utilize dynamic motion due to less reliance on highly-geared servo motors, and improved ability to maintain configurations with high mechanical advantage.



Author(s):  
Binsen Qian ◽  
Harry H. Cheng

This paper presents two bio-inspired algorithms for coalition formation of multiple modular robot systems. An effective and efficient coalition formation system can help modular robot system take full advantage of reconfigurability of modular robots. In this paper, the multirobot coalition formation problem is illustrated and a mathematical model for the problem is described. Two bio-inspired algorithms, ant-colony algorithm (ACA) and genetic algorithm (GA), are introduced for solving the mathematical model. With the two algorithms, it is able to form a large number of robots into many different groups for a variety of applications, such as parallel performance of multiple tasks by multiple teams of robots. The paper compares the efficiency and effectiveness of two algorithms for solving the presented problem with case study. The results for the comparison study are analyzed and discussed. Also, the implementation details of the simulation and experiment using ACA are presented in the paper.



Sign in / Sign up

Export Citation Format

Share Document